A094967 Right-hand neighbors of Fibonacci numbers in Stern's diatomic series.
1, 1, 2, 2, 5, 5, 13, 13, 34, 34, 89, 89, 233, 233, 610, 610, 1597, 1597, 4181, 4181, 10946, 10946, 28657, 28657, 75025, 75025, 196418, 196418, 514229, 514229, 1346269, 1346269, 3524578, 3524578, 9227465, 9227465, 24157817, 24157817, 63245986, 63245986, 165580141, 165580141
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 15.
- Ying Wang and Zihao Zhang, Hankel Determinants for a Class of Weighted Lattice Paths, arXiv:2409.18609 [math.CO], 2024. See p. 2.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Programs
-
GAP
List([0..50], n -> Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2); # G. C. Greubel, Nov 18 2018
-
Magma
[IsEven(n) select Fibonacci(n+1) else Fibonacci(n): n in [0..70]]; // Vincenzo Librandi, Nov 18 2018
-
Maple
A094967 := proc(n) combinat[fibonacci](2*floor(n/2)+1) ; end proc: seq(A094967(n), n=0..37);
-
Mathematica
LinearRecurrence[{0,3,0,-1},{1,1,2,2},40] (* Harvey P. Dale, Apr 05 2015 *) f[n_]:=If[OddQ@n, (Fibonacci[n]), Fibonacci[n+1]]; Array[f, 100, 0] (* Vincenzo Librandi, Nov 18 2018 *) Table[Fibonacci[n, 0]*Fibonacci[n] + LucasL[n, 0]*Fibonacci[n + 1]/2, {n, 0, 50}] (* G. C. Greubel, Nov 18 2018 *)
-
PARI
vector(50, n, n--; fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2) \\ G. C. Greubel, Nov 18 2018
-
Sage
[fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2 for n in range(50)] # G. C. Greubel, Nov 18 2018
Formula
G.f.: (1+x-x^2-x^3)/(1-3*x^2+x^4).
a(n) = Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2)+k, 2*k). - Paul Barry, Jun 22 2005
Starting (1, 2, 2, 5, 5, 13, 13, ...) = A133080 * A000045, where A000045 starts with "1". - Gary W. Adamson, Sep 08 2007
a(n) = Fibonacci(n+1)^(4*k+3) mod Fibonacci(n+2), for any k>-1, n>0. - Gary Detlefs, Nov 29 2010
Comments