cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094967 Right-hand neighbors of Fibonacci numbers in Stern's diatomic series.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 13, 34, 34, 89, 89, 233, 233, 610, 610, 1597, 1597, 4181, 4181, 10946, 10946, 28657, 28657, 75025, 75025, 196418, 196418, 514229, 514229, 1346269, 1346269, 3524578, 3524578, 9227465, 9227465, 24157817, 24157817, 63245986, 63245986, 165580141, 165580141
Offset: 0

Views

Author

Paul Barry, May 26 2004

Keywords

Comments

Fibonacci(2*n+1) repeated. a(n) is the right neighbor of Fibonacci(n+2) in A049456 and A002487 (starts 2,2,5,...). A000045(n+2) = A094966(n) + a(n).
Diagonal sums of A109223. - Paul Barry, Jun 22 2005
The Fi2 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 11 2011
a(n) is the last term of (n+1)-th row in Wythoff array A003603. -Reinhard Zumkeller, Jan 26 2012

Crossrefs

Programs

  • GAP
    List([0..50], n -> Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2); # G. C. Greubel, Nov 18 2018
  • Magma
    [IsEven(n) select Fibonacci(n+1) else Fibonacci(n): n in [0..70]]; // Vincenzo Librandi, Nov 18 2018
    
  • Maple
    A094967 := proc(n) combinat[fibonacci](2*floor(n/2)+1) ; end proc: seq(A094967(n), n=0..37);
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{1,1,2,2},40] (* Harvey P. Dale, Apr 05 2015 *)
    f[n_]:=If[OddQ@n, (Fibonacci[n]), Fibonacci[n+1]]; Array[f, 100, 0] (* Vincenzo Librandi, Nov 18 2018 *)
    Table[Fibonacci[n, 0]*Fibonacci[n] + LucasL[n, 0]*Fibonacci[n + 1]/2, {n, 0, 50}] (* G. C. Greubel, Nov 18 2018 *)
  • PARI
    vector(50, n, n--; fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    [fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2 for n in range(50)] # G. C. Greubel, Nov 18 2018
    

Formula

G.f.: (1+x-x^2-x^3)/(1-3*x^2+x^4).
a(n) = Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2)+k, 2*k). - Paul Barry, Jun 22 2005
Starting (1, 2, 2, 5, 5, 13, 13, ...) = A133080 * A000045, where A000045 starts with "1". - Gary W. Adamson, Sep 08 2007
a(n) = Fibonacci(n+1)^(4*k+3) mod Fibonacci(n+2), for any k>-1, n>0. - Gary Detlefs, Nov 29 2010