cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A095052 Number of primes with number of 0-bits equal to one plus number of 1-bits (A095072) in range ]2^2n,2^(2n+1)].

Original entry on oeis.org

0, 1, 3, 10, 25, 78, 283, 906, 3044, 10920, 37920, 135182, 487555, 1764216, 6415902, 23585285, 86789112, 320972293, 1192327462, 4441973622
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Examples

			In the range ]2^4,2^5] 17 (10001 in binary) is the only such prime thus a(2) = 1.
		

Crossrefs

Extensions

a(17)-a(20) from Amiram Eldar, Jun 13 2024

A031444 Numbers whose base-2 representation has one more 0 than 1's.

Original entry on oeis.org

4, 17, 18, 20, 24, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 263, 267, 269, 270, 275, 277, 278, 281, 282, 284, 291, 293, 294, 297, 298, 300, 305, 306, 308, 312, 323, 325, 326, 329, 330, 332, 337, 338, 340, 344
Offset: 1

Views

Author

Keywords

Comments

If m is a term, then also 4*m+1. - Reinhard Zumkeller, Mar 31 2015

Crossrefs

Cf. A007088, A023416, A000120, A031448, A037861, A095072 (subsequence).
Subsequence of A089648.

Programs

  • Haskell
    a031444 n = a031444_list !! (n-1)
    a031444_list = filter ((== 1) . a037861) [1..]
    -- Reinhard Zumkeller, Mar 31 2015
  • Mathematica
    Select[Range[350], (Differences@ DigitCount[#, 2])[[1]] == 1 &] (* Amiram Eldar, Aug 03 2023 *)

Formula

A037861(a(n)) = 1. - Reinhard Zumkeller, Mar 31 2015

A372516 Number of ones minus number of zeros in the binary expansion of the n-th prime number.

Original entry on oeis.org

0, 2, 1, 3, 2, 2, -1, 1, 3, 3, 5, 0, 0, 2, 4, 2, 4, 4, -1, 1, -1, 3, 1, 1, -1, 1, 3, 3, 3, 1, 7, -2, -2, 0, 0, 2, 2, 0, 2, 2, 2, 2, 6, -2, 0, 2, 2, 6, 2, 2, 2, 6, 2, 6, -5, -1, -1, 1, -1, -1, 1, -1, 1, 3, 1, 3, 1, -1, 3, 3, -1, 3, 5, 3, 5, 7, -1, 1, -1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 13 2024

Keywords

Comments

Absolute value is A177718.

Examples

			The binary expansion of 83 is (1,0,1,0,0,1,1), and 83 is the 23rd prime, so a(23) = 4 - 3 = 1.
		

Crossrefs

The sum instead of difference is A035100, firsts A372684 (primes A104080).
The negative version is A037861(A000040(n)).
Restriction of A145037 to the primes.
The unsigned version is A177718.
- Positions of zeros are A177796, indices of the primes A066196.
- Positions of positive terms are indices of the primes A095070.
- Positions of negative terms are indices of the primes A095071.
- Positions of negative ones are A372539, indices of the primes A095072.
- Positions of ones are A372538, indices of the primes A095073.
- Positions of nonnegative terms are indices of the primes A095074.
- Positions of nonpositive terms are indices of the primes A095075.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of primes, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A101211 lists run-lengths in binary expansion, row-lengths A069010.
A372471 lists the binary indices of each prime.

Programs

  • Mathematica
    Table[DigitCount[Prime[n],2,1]-DigitCount[Prime[n],2,0],{n,100}]
    DigitCount[#,2,1]-DigitCount[#,2,0]&/@Prime[Range[100]] (* Harvey P. Dale, May 09 2025 *)

Formula

a(n) = A000120(A000040(n)) - A080791(A000040(n)).
a(n) = A014499(n) - A035103(n).
a(n) = A145037(A000040(n))

A095071 Zero-bit dominant primes, i.e., primes whose binary expansion contains more 0's than 1's.

Original entry on oeis.org

17, 67, 73, 97, 131, 137, 193, 257, 263, 269, 277, 281, 293, 337, 353, 389, 401, 449, 521, 523, 547, 577, 593, 641, 643, 673, 769, 773, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1091, 1093, 1097, 1109, 1123, 1129, 1153, 1163, 1171
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Examples

			73 is in the sequence because 73 is a prime and 73_10 = 1001001_2. '1001001' has four 0's and one 1. - _Indranil Ghosh_, Jan 31 2017
		

Crossrefs

Complement of A095074 in A000040. Subset: A095072. Cf. A095019.

Programs

  • Mathematica
    Reap[Do[p=Prime[k];id=IntegerDigits[p,2];n=Length@id;If[Count[id,0]>n/2,Sow[p]],{k,200}]][[2,1]]
    (* Zak Seidov *)
    Select[Prime[Range[200]],DigitCount[#,2,0]>DigitCount[#,2,1]&] (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0;
    for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); );
    if(b0 > b1, return(1);, return(0););};
    forprime(x = 2, 1171, if(B(x), print1(x, ", "); ); ); \\ Washington Bomfim, Jan 11 2011
    
  • PARI
    {forprime(p=2,1171,nB=floor(log(p)/log(2));
    sum(i=0,nB,bittest(p,i))<=nB/2&print1(p,","))} \\ Zak Seidov, Jan 11 2011
    
  • Python
    #Program to generate the b-file
    from sympy import isprime
    i=1
    j=1
    while j<=200:
        if isprime(i) and bin(i)[2:].count("0")>bin(i)[2:].count("1"):
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Jan 31 2017

A372538 Numbers k such that the number of ones minus the number of zeros in the binary expansion of the k-th prime number is 1.

Original entry on oeis.org

3, 8, 20, 23, 24, 26, 30, 58, 61, 63, 65, 67, 78, 80, 81, 82, 84, 88, 185, 187, 194, 200, 201, 203, 213, 214, 215, 221, 225, 226, 227, 234, 237, 246, 249, 253, 255, 256, 257, 259, 266, 270, 280, 284, 287, 290, 573, 578, 586, 588, 591, 593, 611, 614, 615, 626
Offset: 1

Views

Author

Gus Wiseman, May 13 2024

Keywords

Examples

			The binary expansion of 83 is (1,0,1,0,0,1,1) with ones minus zeros 4 - 3 = 1, and 83 is the 23rd prime, so 23 is in the sequence.
The primes A000040(a(n)) together with their binary expansions and binary indices begin:
     5:           101 ~ {1,3}
    19:         10011 ~ {1,2,5}
    71:       1000111 ~ {1,2,3,7}
    83:       1010011 ~ {1,2,5,7}
    89:       1011001 ~ {1,4,5,7}
   101:       1100101 ~ {1,3,6,7}
   113:       1110001 ~ {1,5,6,7}
   271:     100001111 ~ {1,2,3,4,9}
   283:     100011011 ~ {1,2,4,5,9}
   307:     100110011 ~ {1,2,5,6,9}
   313:     100111001 ~ {1,4,5,6,9}
   331:     101001011 ~ {1,2,4,7,9}
   397:     110001101 ~ {1,3,4,8,9}
   409:     110011001 ~ {1,4,5,8,9}
   419:     110100011 ~ {1,2,6,8,9}
   421:     110100101 ~ {1,3,6,8,9}
   433:     110110001 ~ {1,5,6,8,9}
   457:     111001001 ~ {1,4,7,8,9}
  1103:   10001001111 ~ {1,2,3,4,7,11}
  1117:   10001011101 ~ {1,3,4,5,7,11}
  1181:   10010011101 ~ {1,3,4,5,8,11}
  1223:   10011000111 ~ {1,2,3,7,8,11}
		

Crossrefs

Restriction of A031448 to the primes, positions of ones in A145037.
Taking primes gives A095073, negative A095072.
Positions of ones in A372516, absolute value A177718.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of primes, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives the length of an integer's binary expansion.
A101211 lists run-lengths in binary expansion, row-lengths A069010.
A372471 lists binary indices of primes.

Programs

  • Mathematica
    Select[Range[1000],DigitCount[Prime[#],2,1]-DigitCount[Prime[#],2,0]==1&]

A372539 Numbers k such that the number of ones minus the number of zeros in the binary expansion of the k-th prime number is -1.

Original entry on oeis.org

7, 19, 21, 25, 56, 57, 59, 60, 62, 68, 71, 77, 79, 87, 175, 177, 179, 180, 186, 188, 189, 192, 193, 195, 196, 197, 204, 210, 212, 216, 218, 243, 244, 248, 254, 262, 263, 265, 279, 567, 572, 576, 577, 583, 592, 598, 599, 600, 602, 603, 605, 606, 610, 613, 616
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Examples

			The binary expansion of 17 is (1,0,0,0,1) with ones minus zeros 2 - 3 = -1, and 17 is the 7th prime, 7 is in the sequence.
The primes A000040(a(n)) together with their binary expansions and binary indices begin:
    17:         10001 ~ {1,5}
    67:       1000011 ~ {1,2,7}
    73:       1001001 ~ {1,4,7}
    97:       1100001 ~ {1,6,7}
   263:     100000111 ~ {1,2,3,9}
   269:     100001101 ~ {1,3,4,9}
   277:     100010101 ~ {1,3,5,9}
   281:     100011001 ~ {1,4,5,9}
   293:     100100101 ~ {1,3,6,9}
   337:     101010001 ~ {1,5,7,9}
   353:     101100001 ~ {1,6,7,9}
   389:     110000101 ~ {1,3,8,9}
   401:     110010001 ~ {1,5,8,9}
   449:     111000001 ~ {1,7,8,9}
  1039:   10000001111 ~ {1,2,3,4,11}
  1051:   10000011011 ~ {1,2,4,5,11}
  1063:   10000100111 ~ {1,2,3,6,11}
  1069:   10000101101 ~ {1,3,4,6,11}
  1109:   10001010101 ~ {1,3,5,7,11}
  1123:   10001100011 ~ {1,2,6,7,11}
  1129:   10001101001 ~ {1,4,6,7,11}
  1163:   10010001011 ~ {1,2,4,8,11}
		

Crossrefs

Restriction of A031444 (positions of '-1's in A145037) to A000040.
Taking primes gives A095072.
Positions of negative ones in A372516, absolute value A177718.
The negative version is A372538, taking primes A095073.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of primes, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives the length of an integer's binary expansion.
A101211 lists run-lengths in binary expansion, row-lengths A069010.
A372471 lists binary indices of primes.

Programs

  • Mathematica
    Select[Range[1000],DigitCount[Prime[#],2,1]-DigitCount[Prime[#],2,0]==-1&]
Showing 1-6 of 6 results.