cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095374 One less than the number of divisors of 2*n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 3, 1, 3, 1, 1, 5, 1, 2, 3, 1, 3, 3, 1, 1, 5, 3, 1, 3, 1, 1, 5, 3, 1, 4, 1, 3, 3, 1, 3, 3, 3, 1, 5, 1, 1, 7, 1, 1, 3, 1, 3, 5, 3, 2, 3, 3, 1, 3, 1, 3, 7, 1, 1, 3, 3, 3, 5, 1, 1, 5, 3, 1, 3, 3, 1, 7, 1, 2, 5, 1, 5
Offset: 1

Views

Author

Labos Elemer, Jun 07 2004

Keywords

Comments

Number of special divisors of A095372(n) with A095372(k) form.

Examples

			A095372(22) is divisible by {91, 9091, 90909091, 90909090909091, A095372(22)}, thus a(22)=5.
G.f.= x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 3*x^7 + x^8 + x^9 + 3*x^10 + x^11 + 2*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    g[x_]:=1+90*(100^x-1)/99 t=Table[1+90*(100^n-1)/99, {n, 1, 35}]; Do[Print[{w, is=Intersection[Divisors[g[w]], t], Length[is]}], {w, 1, 35}]
    Table[DivisorSigma[0,2n+1],{n,90}]-1 (* Harvey P. Dale, Oct 31 2015 *)
    Table[Sum[1 - Ceiling@ # + Floor@ # &[(n + i)/(n - i + 1)], {i, n}], {n, 87}] (* Michael De Vlieger, Feb 27 2017 *)
  • PARI
    {a(n) = if( n<0, 0, numdiv(2*n + 1) - 1)} /* Michael Somos, Aug 30 2012 */

Formula

a(n) = A023645(2*n + 1) = A000005(2*n + 1) - 1.
a(n) = Sum_{i=1..n} 1-ceiling((n+i)/(n-i+1))+floor((n+i)/(n-i+1)). - Wesley Ivan Hurt, Feb 26 2017
O.g.f.: Sum_{n >= 1} x^n/(1 - x^(2*n+1)) = x/(1 - x) + Sum_{n >= 1} x^(2*n*(n+1))*(1 + x^(2*n+1))/(1 - x^(2*n+1)). - Peter Bala, Mar 04 2019
a(n) = A099774(n+1) - 1. - Bernard Schott, Mar 04 2019
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3 + 3*log(2)) / 2, where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 15 2025