A040016
Largest prime < e^n.
Original entry on oeis.org
2, 7, 19, 53, 139, 401, 1093, 2971, 8101, 22013, 59863, 162751, 442399, 1202603, 3269011, 8886109, 24154939, 65659969, 178482289, 485165141, 1318815713, 3584912833, 9744803443, 26489122081, 72004899319, 195729609407, 532048240573, 1446257064289, 3931334297131
Offset: 1
a(20) = floor(e^20) - 54 = 485165195 - 54 = 485165141 as there are no primes p such that 485165141 < p < 485165195.
Cf.
A000040,
A000149,
A007512,
A014210,
A050808,
A050809,
A059303,
A064118,
A095935,
A115019,
A074496,
A118840.
A117879
First semiprime after e^n.
Original entry on oeis.org
4, 4, 9, 21, 55, 155, 407, 1099, 2981, 8105, 22033, 59881, 162757, 442417, 1202611, 3269021, 8886117, 24154953, 65659981, 178482301, 485165203, 1318815739, 3584912849, 9744803447, 26489122131, 72004899341, 195729609431
Offset: 0
Cf.
A000040,
A000149,
A001358,
A007512,
A014210,
A050808,
A050809,
A059303,
A064118,
A095935,
A115019,
A074496,
A118840.
-
fsa[n_]:=Module[{i=1,c=Floor[E^n]},While[PrimeOmega[c+i]!=2,i++];c+i]; Array[fsa,30,0] (* Harvey P. Dale, Oct 18 2013 *)
A198188
Primes from the decimal expansion of e, sorted first by the final digit index and then by length.
Original entry on oeis.org
2, 7, 71, 271, 2, 281, 2718281, 2, 5, 59, 5, 2, 3, 23, 523, 4523, 904523, 5, 3, 53, 353, 8284590452353, 2, 7, 360287, 28459045235360287, 7, 47, 8747, 6028747, 8182845904523536028747, 71, 360287471, 8281828459045235360287471, 3, 13, 74713, 82818284590452353602874713
Offset: 1
The first digit, 2, is prime, so a(1) = 2.
The second digit, 7, is prime, so a(2) = 7. 27 is not prime.
The third digit, 1, is not prime, but 71 and 271 are, so a(3) = 71 and a(4) = 271.
a(17) shows that "leading zeros are not allowed", i.e., if a prime p is prefixed by a 0 then it is not listed twice. - _M. F. Hasler_, Feb 05 2012
-
v=[2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3]
for(n=1, #v, x=0; p=1; forstep(k=n, 1, -1, x+=p*v[k]; p*=10; if(v[k]&&isprime(x), print1(x", "))))
-
default(realprecision,D=300);for(i=0,D-5,E=exp(1)\.1^i;for(j=1,i+1,ispseudoprime(t=E%10^j) & t!=L print1(L=t","))) \\ M. F. Hasler, Feb 05 2012
A137443
First n-digit prime in consecutive digits of e.
Original entry on oeis.org
7, 71, 281, 4523, 74713, 904523, 6028747, 72407663, 360287471, 7427466391, 75724709369, 749669676277, 8284590452353, 99959574966967, 724709369995957, 2470936999595749, 28459045235360287, 571382178525166427
Offset: 1
7427466391 is the first 10-digit prime found in consecutive digits of e, so a(10) = 7427466391.
-
def a(digits):
bits = 0
pos = 0
while True:
bits += (digits * 4) + 50
decimals = RealField(bits, rnd='RNDZ')(exp(1)).frac().str()[2:]
for s in range(pos, len(decimals) - digits + 1):
if decimals[s] != '0':
i = Integer(decimals[s:s+digits])
if i.is_prime():
return i
pos = len(decimals) - digits + 1
A186208
The first n-digit prime in the decimal expansion of 1/e.
Original entry on oeis.org
3, 67, 367, 7879, 36787, 367879, 8794411, 21595523, 867445811, 2159552377, 23215955237, 794411714423, 9441171442321, 57147274345919, 767834507836801, 4581113103176783, 67834507836801697, 595523770161460867, 3176783450783680169
Offset: 1
-
Digits := 10000: p0 := evalf(1/exp(1))*10:for d from 1 to 20 do: id:=0:for
i from 0 to 50000 while(id=0) do :q0:=trunc(p0*10^(i+d-1)): x:= irem(q0,10^d):
if type(x,prime)=true and length(x)=d then printf(`%d, `,x):id:=1: else fi:od:od:
-
With[{x=RealDigits[1/E,10,1000][[1]]},Table[FromDigits[ First[ Select[ Partition[x,n,1],PrimeQ[FromDigits[#]]&]]],{n,20}]] (* Harvey P. Dale, Feb 17 2011 *)
A117881
First semiprime after Pi^n.
Original entry on oeis.org
4, 4, 10, 33, 106, 309, 965, 3022, 9489, 29813, 93649, 294209, 924271, 2903678, 9122173, 28658147, 90032221, 282844574, 888582413, 2791563955, 8769956797, 27551631845, 86556004193, 271923706897, 854273519921, 2683779414319
Offset: 0
a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
- Eric Weisstein's World of Mathematics, e-Prime.
Cf.
A000040,
A000149,
A000796,
A001358,
A007512,
A014210,
A050808,
A050809,
A059303,
A064118,
A095935,
A115019,
A074496,
A118840.
-
fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]
Showing 1-6 of 6 results.
Comments