cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A040016 Largest prime < e^n.

Original entry on oeis.org

2, 7, 19, 53, 139, 401, 1093, 2971, 8101, 22013, 59863, 162751, 442399, 1202603, 3269011, 8886109, 24154939, 65659969, 178482289, 485165141, 1318815713, 3584912833, 9744803443, 26489122081, 72004899319, 195729609407, 532048240573, 1446257064289, 3931334297131
Offset: 1

Views

Author

Keywords

Comments

A050809 is a subset. Lim_{n --> infinity} a(n+1)/a(n) = e. - Jonathan Vos Post, May 02 2006

Examples

			a(20) = floor(e^20) - 54 = 485165195 - 54 = 485165141 as there are no primes p such that 485165141 < p < 485165195.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, Dec 22 2006
a(27)-a(29) from Giovanni Resta, Apr 29 2017

A117879 First semiprime after e^n.

Original entry on oeis.org

4, 4, 9, 21, 55, 155, 407, 1099, 2981, 8105, 22033, 59881, 162757, 442417, 1202611, 3269021, 8886117, 24154953, 65659981, 178482301, 485165203, 1318815739, 3584912849, 9744803447, 26489122131, 72004899341, 195729609431
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Semiprime analog of A074496 = first prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = e. There are numbers where floor(e^n) is itself a semiprime, as with floor(e^6) = 403 = 13 * 31, floor(e^15) = 3269017 = 773 * 4229, floor(e^20) = 485165195 = 5 * 97033039, floor(e^22) = 3584912846 = 2 * 1792456423, floor(e^24) = 26489122129 = 103 * 257175943.

Crossrefs

Programs

  • Mathematica
    fsa[n_]:=Module[{i=1,c=Floor[E^n]},While[PrimeOmega[c+i]!=2,i++];c+i]; Array[fsa,30,0] (* Harvey P. Dale, Oct 18 2013 *)

Formula

a(n) = Smallest semiprime > e^n. Smallest semiprime > floor(e^n). a(n) = min{s > A000149(n) and s in A001358}.

A198188 Primes from the decimal expansion of e, sorted first by the final digit index and then by length.

Original entry on oeis.org

2, 7, 71, 271, 2, 281, 2718281, 2, 5, 59, 5, 2, 3, 23, 523, 4523, 904523, 5, 3, 53, 353, 8284590452353, 2, 7, 360287, 28459045235360287, 7, 47, 8747, 6028747, 8182845904523536028747, 71, 360287471, 8281828459045235360287471, 3, 13, 74713, 82818284590452353602874713
Offset: 1

Views

Author

Keywords

Examples

			The first digit, 2, is prime, so a(1) = 2.
The second digit, 7, is prime, so a(2) = 7. 27 is not prime.
The third digit, 1, is not prime, but 71 and 271 are, so a(3) = 71 and a(4) = 271.
a(17) shows that "leading zeros are not allowed", i.e., if a prime p is prefixed by a 0 then it is not listed twice. - _M. F. Hasler_, Feb 05 2012
		

Crossrefs

Cf. A095935.

Programs

  • PARI
    v=[2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3]
    for(n=1, #v, x=0; p=1; forstep(k=n, 1, -1, x+=p*v[k]; p*=10; if(v[k]&&isprime(x), print1(x", "))))
    
  • PARI
    default(realprecision,D=300);for(i=0,D-5,E=exp(1)\.1^i;for(j=1,i+1,ispseudoprime(t=E%10^j) & t!=L print1(L=t",")))  \\ M. F. Hasler, Feb 05 2012

A137443 First n-digit prime in consecutive digits of e.

Original entry on oeis.org

7, 71, 281, 4523, 74713, 904523, 6028747, 72407663, 360287471, 7427466391, 75724709369, 749669676277, 8284590452353, 99959574966967, 724709369995957, 2470936999595749, 28459045235360287, 571382178525166427
Offset: 1

Views

Author

Dan Drake, Apr 18 2008

Keywords

Comments

If the "2" at the beginning of e is included, the only values for n <= 1000 that change are a(1) = 2, a(3) = 271 and a(85) = 2718281828459045235360287471352662497757247093699959574966967627724076630353547594571.
For another version starting with 2 see A095935. - Omar E. Pol, Oct 24 2011

Examples

			7427466391 is the first 10-digit prime found in consecutive digits of e, so a(10) = 7427466391.
		

Crossrefs

Cf. A095926.
Cf. A001113, A095935. - Omar E. Pol, Oct 24 2011

Programs

  • Sage
    def a(digits):
        bits = 0
        pos = 0
        while True:
            bits += (digits * 4) + 50
            decimals = RealField(bits, rnd='RNDZ')(exp(1)).frac().str()[2:]
            for s in range(pos, len(decimals) - digits + 1):
                if decimals[s] != '0':
                    i = Integer(decimals[s:s+digits])
                    if i.is_prime():
                        return i
            pos = len(decimals) - digits + 1

A186208 The first n-digit prime in the decimal expansion of 1/e.

Original entry on oeis.org

3, 67, 367, 7879, 36787, 367879, 8794411, 21595523, 867445811, 2159552377, 23215955237, 794411714423, 9441171442321, 57147274345919, 767834507836801, 4581113103176783, 67834507836801697, 595523770161460867, 3176783450783680169
Offset: 1

Views

Author

Michel Lagneau, Feb 15 2011

Keywords

Comments

1/e = 0.36787944117144232159....

Crossrefs

Programs

  • Maple
    Digits := 10000: p0 := evalf(1/exp(1))*10:for d from 1 to 20 do: id:=0:for
      i from 0 to 50000 while(id=0) do :q0:=trunc(p0*10^(i+d-1)): x:= irem(q0,10^d):
      if type(x,prime)=true and length(x)=d then printf(`%d, `,x):id:=1: else fi:od:od:
  • Mathematica
    With[{x=RealDigits[1/E,10,1000][[1]]},Table[FromDigits[ First[ Select[ Partition[x,n,1],PrimeQ[FromDigits[#]]&]]],{n,20}]]  (* Harvey P. Dale, Feb 17 2011 *)

A117881 First semiprime after Pi^n.

Original entry on oeis.org

4, 4, 10, 33, 106, 309, 965, 3022, 9489, 29813, 93649, 294209, 924271, 2903678, 9122173, 28658147, 90032221, 282844574, 888582413, 2791563955, 8769956797, 27551631845, 86556004193, 271923706897, 854273519921, 2683779414319
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Pi and semiprime analog of A074496 First prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = Pi. See also A000796 Decimal expansion of Pi. There are numbers where floor(Pi^n) is itself a semiprime, as with floor(Pi^2) = 9, floor(Pi^6) = 961 = 31^2, floor(Pi^9) = 29809 = 13 * 2293, floor(Pi^25) = 2683779414317 = 5749 * 466825433.

Examples

			a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
		

Crossrefs

Programs

  • Mathematica
    fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]

Formula

a(n) = min{s in A001358 and s > Pi^n}.
Showing 1-6 of 6 results.