cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095986 A card-arranging problem: number of permutations p_1, ..., p_n of 1, ..., n such that i + p_i is a square for every i.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 4, 3, 2, 5, 15, 21, 66, 37, 51, 144, 263, 601, 1333, 2119, 2154, 2189, 3280, 12405, 55329, 160895, 588081, 849906, 1258119, 1233262, 2478647, 4305500, 17278636, 47424179, 153686631, 396952852, 1043844982
Offset: 0

Views

Author

Keywords

Comments

Gardner attributes the problem (for the case n = 13) to David L. Silverman.

Examples

			a(0) = 1: the empty permutation.
a(3) = 1: 321.
a(5) = 1: 32154.
a(8) = 1: 87654321.
a(9) = 1: 826543917.
		

References

  • M. Gardner, Mathematical Games column, Scientific American, Nov 1974.
  • M. Gardner, Mathematical Games column, Scientific American, Mar 1975.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 81.

Crossrefs

Cf. A006063 (for cubes), A010052, A073364.

Programs

  • Maple
    b:= proc(s) option remember; (n-> `if`(n=0, 1, add(
         `if`(issqr(n+j), b(s minus {j}), 0), j=s)))(nops(s))
        end:
    a:= n-> b({$1..n}):
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 03 2024
  • Mathematica
    nmax=45; a[n_]:=Permanent[Table[If[IntegerQ[Sqrt[i+j]],1,0],{i,n},{j,n}]]; Join[{1},Array[a,nmax]] (* Stefano Spezia, Mar 03 2024 *)

Formula

a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j is a square or not.

Extensions

a(32) and a(33) from John W. Layman, Jul 21 2004
a(34)-a(36) from Ray Chandler, Jul 26 2004
a(37)-a(45) from William Rex Marshall, Apr 18 2006
a(0)=1 prepended by Alois P. Heinz, Mar 03 2024