A095986 A card-arranging problem: number of permutations p_1, ..., p_n of 1, ..., n such that i + p_i is a square for every i.
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 4, 3, 2, 5, 15, 21, 66, 37, 51, 144, 263, 601, 1333, 2119, 2154, 2189, 3280, 12405, 55329, 160895, 588081, 849906, 1258119, 1233262, 2478647, 4305500, 17278636, 47424179, 153686631, 396952852, 1043844982
Offset: 0
Examples
a(0) = 1: the empty permutation. a(3) = 1: 321. a(5) = 1: 32154. a(8) = 1: 87654321. a(9) = 1: 826543917.
References
- M. Gardner, Mathematical Games column, Scientific American, Nov 1974.
- M. Gardner, Mathematical Games column, Scientific American, Mar 1975.
- M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 81.
Programs
-
Maple
b:= proc(s) option remember; (n-> `if`(n=0, 1, add( `if`(issqr(n+j), b(s minus {j}), 0), j=s)))(nops(s)) end: a:= n-> b({$1..n}): seq(a(n), n=0..25); # Alois P. Heinz, Mar 03 2024
-
Mathematica
nmax=45; a[n_]:=Permanent[Table[If[IntegerQ[Sqrt[i+j]],1,0],{i,n},{j,n}]]; Join[{1},Array[a,nmax]] (* Stefano Spezia, Mar 03 2024 *)
Formula
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j is a square or not.
Extensions
a(32) and a(33) from John W. Layman, Jul 21 2004
a(34)-a(36) from Ray Chandler, Jul 26 2004
a(37)-a(45) from William Rex Marshall, Apr 18 2006
a(0)=1 prepended by Alois P. Heinz, Mar 03 2024
Comments