cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096045 a(n) = B(2*n, 2)/B(2*n) (see formula section).

Original entry on oeis.org

1, 10, 46, 190, 766, 3070, 12286, 49150, 196606, 786430, 3145726, 12582910, 50331646, 201326590, 805306366, 3221225470, 12884901886, 51539607550, 206158430206, 824633720830, 3298534883326, 13194139533310, 52776558133246, 211106232532990, 844424930131966
Offset: 0

Views

Author

Benoit Cloitre, Jun 17 2004

Keywords

Crossrefs

Programs

  • Magma
    [3*4^n-2: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    a[n_]:= Sum[2^k*Sum[Binomial[2*n, j]*BernoulliB[j], {j,0,k}], {k,0,2*n}]/BernoulliB[2*n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jan 14 2015 *)
    NestList[4#+6&,1,30] (* Harvey P. Dale, Dec 27 2016 *)
  • Maxima
    A096045(n):=3*4^n-2$ makelist(A096045(n),n,0,30); /* Martin Ettl, Nov 13 2012 */
    
  • PARI
    a(n)=sum(i=0,2*n,2^i*sum(j=0,i,binomial(2*n,j)*bernfrac(j)))/bernfrac(2*n)
    
  • SageMath
    [3*4^n-2 for n in range(41)] # G. C. Greubel, Jan 22 2023

Formula

a(n) = B(2*n, 2)/B(2*n), where B(n, p) = Sum_{i=0..n} p^i * (Sum_{j=0..i} binomial(n,j)*B(j)) with B(k) = k-th Bernoulli number.
a(n) = 3*4^n - 2.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = 4*a(n-1) + 6. First differences give A002063. - Paul Curtz, Jul 07 2008
From G. C. Greubel, Jan 22 2023: (Start)
a(n) = 3*A000302(n) - 2.
G.f.: (1+5*x)/((1-x)*(1-4*x)).
E.g.f.: 3*exp(4*x) - 2*exp(x). (End)