A007443 Binomial transform of primes.
2, 5, 13, 33, 83, 205, 495, 1169, 2707, 6169, 13889, 30993, 68701, 151469, 332349, 725837, 1577751, 3413221, 7349029, 15751187, 33616925, 71475193, 151466705, 320072415, 674721797, 1419327223, 2979993519, 6245693407, 13068049163
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..3000 (terms 1..1000 from Vincenzo Librandi)
- Vaclav Kotesovec, Plot of a(n) / (2^n * n * log(n)) for n = 2..20000
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
a:=n->add(binomial(n-1,k-1)*ithprime(k),k=1..n): seq(a(n),n=1..30); # Muniru A Asiru, Oct 23 2018
-
Mathematica
A007443[n_]:=Sum[Binomial[n-1,k-1]Prime[k],{k,n}];Array[A007443,50] (* or *) Module[{nmax=50,b},b=Prime[Range[nmax]];Join[{2},Table[First[b=ListConvolve[{1,1},b]],nmax-1]]] (* Paolo Xausa, Oct 31 2023 *)
-
PARI
A007443(n)=sum(k=1,n,binomial(n-1,k-1)*prime(k)) \\ M. F. Hasler, Jun 02 2017
Formula
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*prime(k). - M. F. Hasler, Jun 02 2017
G.f.: Sum_{k>=1} prime(k)*x^k/(1 - x)^k. - Ilya Gutkovskiy, Apr 21 2019
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, May 21 2010
Comments