A096373 Number of partitions of n such that the least part occurs exactly twice.
0, 1, 0, 2, 1, 3, 3, 6, 5, 11, 11, 17, 20, 30, 33, 49, 56, 77, 92, 122, 143, 190, 225, 287, 344, 435, 516, 648, 770, 951, 1134, 1388, 1646, 2007, 2376, 2868, 3395, 4078, 4807, 5749, 6764, 8042, 9449, 11187, 13101, 15463, 18070, 21236, 24772, 29021, 33764
Offset: 1
Examples
a(6)=3 because we have [4,1,1], [3,3] and [2,2,1,1]. G.f. = x^2 + 2*x^4 + x^5 + 3*x^6 + 3*x^7 + 6*x^8 + 5*x^9 + 11*x^10 + 11*x^11 + ... From _Gus Wiseman_, Oct 26 2018: (Start) The a(2) = 1 through a(10) = 11 partitions where the least part occurs exactly twice (zero terms not shown): (11) (22) (311) (33) (322) (44) (522) (55) (211) (411) (511) (422) (711) (433) (2211) (3211) (611) (4311) (622) (3311) (5211) (811) (4211) (32211) (3322) (22211) (4411) (5311) (6211) (33211) (42211) (222211) The a(2) = 1 through a(10) = 11 partitions that cannot be grouped into pairs of distinct parts (zero terms not shown): (11) (22) (2111) (33) (2221) (44) (3222) (55) (1111) (3111) (4111) (2222) (6111) (3331) (111111) (211111) (5111) (321111) (4222) (221111) (411111) (7111) (311111) (21111111) (222211) (11111111) (331111) (421111) (511111) (22111111) (31111111) (1111111111) (End)
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
g:=sum(x^(2*k)/product(1-x^j,j=k+1..80),k=1..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 08 2006
-
Mathematica
(* do first *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{p = Partitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 3]; If[ q[[1]] != q[[3]] && q[[2]] == q[[3]], c++ ]; k++ ]; c]; Table[ f[n], {n, 51}] (* Robert G. Wilson v, Jul 23 2004 *) Table[Count[IntegerPartitions[n+2], p_ /; MemberQ[p, Length[p] + Min[p]]], {n, 50}] (* Clark Kimberling, Feb 27 2014 *) p[n_, m_] := If[m == n, 1, If[m > n, 0, p[n, m] = Sum[p[n-m, k], {k, m, n}]]]; a[n_] := Sum[p[n+1-k, k+1], {k, n/2}]; Array[a, 100] (* Giovanni Resta, Mar 07 2014 *)
-
PARI
{q=sum(m=1,100,x^(2*m)/prod(i=m+1,100,1-x^i,1+O(x^60)),1+O(x^60));for(n=1,51,print1(polcoeff(q,n),","))} \\ Klaus Brockhaus, Jul 21 2004
-
PARI
{a(n) = if( n<0, 0, polcoeff( ( 1 - (1 - x - x^2) / eta(x + x^4 * O(x^n)) ) * (1 - x) / x^3, n))} /* Michael Somos, Feb 28 2014 */
Formula
G.f.: Sum_{m>0} (x^(2*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m)/Product_{i>m} (1-x^i)).
G.f.: Sum_{k>=1} (x^(2*k-2)*(1-x^(k-1))/Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Apr 08 2006
a(n) = -p(n+3)+2*p(n+2)-p(n), p(n)=A000041(n). - Mircea Merca, Jul 10 2013
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (12*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Jun 02 2018
Extensions
Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 21 2004
Comments