cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 70 results. Next

A096550 Consecutive internal states of the IMSL pseudo-random number generator RNUN when started with ISEED=1.

Original entry on oeis.org

1, 16807, 282475249, 1622650073, 984943658, 1144108930, 470211272, 101027544, 1457850878, 1458777923, 2007237709, 823564440, 1115438165, 1784484492, 74243042, 114807987, 1137522503, 1441282327, 16531729, 823378840, 143542612, 896544303, 1474833169, 1264817709, 1998097157
Offset: 1

Views

Author

Hugo Pfoertner, Jul 18 2004

Keywords

Comments

This generator is also called "The minimal standard generator" or LCG16807 by L'Ecuyer. Generators of this form are ascribed to D. H. Lehmer, first described by Hutchinson and independently by Downham and Roberts (see link). It was first analyzed by Lewis, Goodman and Miller (see link).
Also used by Lotus 1-2-3 and some versions of APL. - Sean A. Irvine, May 27 2025

References

  • D. W. Hutchinson, A new uniform pseudo-random number generator. Comm, ACM 9, No. 6, 432-433, 1966.
  • D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.

Crossrefs

Cf. A096551-A096561 (other pseudo-random number generators); A061364, A384406.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(16807 *a(n-1), 2147483647))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    NestList[Mod[#*16807, 2^31 - 1] &, 1, 50] (* Paolo Xausa, Aug 29 2024 *)
  • PARI
    A096550(n)=lift(Mod(16807,1<<31-1)^(n-1)) \\ M. F. Hasler, May 14 2015

Formula

a(1)=1, a(n) = 7^5 * a(n-1) mod (2^31-1). The sequence is periodic with period length 2^31-2.

A384113 Consecutive states of a linear congruential pseudo-random number generator for MacModula-2 when started at 1.

Original entry on oeis.org

1, 13, 169, 2197, 829, 1533, 1441, 245, 874, 2118, 2113, 2048, 1203, 1773, 2250, 1518, 1246, 21, 273, 1238, 2228, 1232, 2150, 218, 523, 2177, 569, 464, 1410, 2153, 257, 1030, 1835, 745, 441, 1111, 577, 568, 451, 1241, 2267, 1739, 1808, 394, 500, 1878, 1304
Offset: 1

Views

Author

Sean A. Irvine, May 19 2025

Keywords

Comments

An example of a terrible random number generator.
Periodic with period 1155 (well below the modulus 2311).

References

  • Modula Corporation, MacModula-2 System Reference Manual, 1985 (see p. 41).

Crossrefs

Cf. A001022.
Cf. A096550-A096561 other pseudo-random number generators.
Cf. A383809 (another generator with a similar problem).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(13*a(n-1), 2311))
        end:
    seq(a(n), n=1..47);  # Alois P. Heinz, May 21 2025
  • Mathematica
    NestList[Mod[13*#, 2311] &, 1, 100] (* Paolo Xausa, May 22 2025 *)
  • PARI
    my(f=Mod(13,2311)); a(n) = lift(f^((n-1) % 1155)); \\ Kevin Ryde, May 25 2025

Formula

a(n) = 13 * a(n-1) mod 2311.

A384489 Consecutive states of the linear congruential pseudo-random number generator 392314069 * s mod 2^32 when started at s=1.

Original entry on oeis.org

1, 392314069, 3884484921, 1268090989, 4095610545, 2939532613, 4120247913, 1352616285, 3662927457, 371333813, 3840713881, 2970275661, 487491345, 3493879077, 1452026825, 2933230141, 3932967105, 2951638165, 920470521, 3864652333, 1810654065, 1799305477
Offset: 1

Views

Author

Sean A. Irvine, May 30 2025

Keywords

Comments

Periodic with period 2^30.

References

  • George S. Fishman, Discrete-Event Simulation: Modeling, Programming, and Analysis, Springer, 2001 (see p. 453).

Crossrefs

Cf. A384534.
Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[392314069*#, 2^32] &, 1, 50] (* Paolo Xausa, Jun 04 2025 *)

Formula

a(n) = 392314069 * a(n-1) mod 2^32.

A384158 Consecutive states of the linear congruential pseudo-random number generator for 16-bit WATFOR/WATFIV when started at 1.

Original entry on oeis.org

1, 253, 31241, 6885, 5201, 5133, 20697, 26229, 16801, 23581, 2217, 3845, 22513, 26925, 29049, 9365, 10049, 19261, 23369, 14117, 32657, 4685, 5657, 22197, 12513, 20061, 29161, 4933, 2865, 3949, 16057, 31957, 24193, 25981, 19593, 9061, 31441, 24717, 27481, 5877
Offset: 1

Views

Author

Sean A. Irvine, May 20 2025

Keywords

Comments

Periodic with period 8192 (considerably less than the modulus).
WATFOR and WATFIV are early FORTRAN compilers from the University of Waterloo.

References

  • Terry M. Walker, Fundamentals of Fortran Programming: with WATFOR/WATFIV, Allyn and Bacon, 1975.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(253*a(n-1), 2^15))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, May 21 2025
  • Mathematica
    NestList[Mod[253*#, 2^15] &, 1, 100] (* Paolo Xausa, May 22 2025 *)

Formula

a(n) = 253 * a(n-1) mod 2^15.
a(n) == 1 (mod 4). - Hugo Pfoertner, May 26 2025

A384081 Consecutive internal states of a linear congruential pseudo-random number generator for the Hewlett-Packard HP-20S when started at 1.

Original entry on oeis.org

1, 997, 994009, 1026973, 3892081, 404757, 3542729, 2100813, 4510561, 7029317, 8229049, 4361853, 8767441, 1138677, 5260969, 5186093, 534721, 3116837, 7486489, 4029533, 7444401, 2067797, 1593609, 8828173, 1688481, 3415557, 5310329, 4398013, 4818961, 4504117
Offset: 1

Views

Author

Sean A. Irvine, May 23 2025

Keywords

Comments

Periodic with period 500000 (considerably less than the modulus 10^7).

Crossrefs

Cf. A096550-A096561 (other pseudo-random number generators).
Cf. A384568.

Programs

  • Mathematica
    NestList[Mod[997*#, 10^7] &, 1, 50] (* Paolo Xausa, May 26 2025 *)

Formula

a(n) = (997 * a(n-1)) mod 10^7.

A384126 Consecutive states of a linear congruential pseudo-random number generator (93*s+1) mod 2^13 when started at s=1.

Original entry on oeis.org

1, 94, 551, 2092, 6141, 5866, 4867, 2072, 4281, 4918, 6815, 3012, 1589, 322, 5371, 7984, 5233, 3342, 7703, 3676, 5997, 666, 4595, 1352, 2857, 3558, 3215, 4084, 2981, 6898, 2539, 6752, 5345, 5566, 1543, 4236, 733, 2634, 7395, 7800, 4505, 1174, 2687, 4132, 7445
Offset: 1

Views

Author

Sean A. Irvine, May 19 2025

Keywords

Comments

Periodic with period 8192.

References

  • John Konvalina and Stanley Wileman, Programming with Pascal, McGraw-Hill, 1987 (see p. 288).

Crossrefs

Cf. A096550-A096561 (other pseudo-random number generators).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(93*a(n-1)+1, 2^13))
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, May 21 2025
  • Mathematica
    NestList[Mod[93*# + 1, 2^13] &, 1, 100] (* Paolo Xausa, May 22 2025 *)

Formula

a(n) = (93*a(n-1) + 1) mod 2^13.

A384289 Consecutive internal states of the linear congruential pseudo-random number generator for GWBASIC 3.23 when started at 1.

Original entry on oeis.org

1, 2745024, 2356867, 12486458, 8679701, 14802820, 7082039, 14027294, 11434089, 5380488, 9466411, 4830274, 15796733, 15840460, 12300383, 15321510, 15423953, 11736400, 10919635, 14405194, 3988453, 8904468, 807303, 4097582, 10044473, 2422296, 6167675, 914770
Offset: 1

Views

Author

Sean A. Irvine, May 24 2025

Keywords

Comments

Periodic with period 2^24.
Also the random number generator used by Commodore AmigaBASIC.
Possibly also used by other versions of GWBASIC.

References

  • David I. Schneider, Handbook of BASIC (3rd ed.), Simon & Schuster, 1988 (see p. 497).

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.
Cf. A384290, A384291 (similar parameters).

Programs

  • Mathematica
    NestList[Mod[214013*#+2531011, 2^24] &, 1, 27] (* Stefano Spezia, May 24 2025 *)

Formula

a(n) = (214013 * a(n-1) + 2531011) mod 2^24.

A384397 Consecutive states of the linear congruential pseudo-random number generator 45742*s mod (2^31-909) when started at s=1.

Original entry on oeis.org

1, 45742, 2092330564, 521429475, 1283746116, 346822856, 916086159, 1929881610, 71652547, 472145160, 1777485336, 2037740772, 997589268, 2015058584, 703108709, 897067814, 1723253915, 1726644935, 72441828, 68230099, 688768691, 2085682592, 1372443189, 933442051
Offset: 1

Views

Author

Sean A. Irvine, May 27 2025

Keywords

Comments

Periodic with period 2^31-910.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[45742*#, 2^31 - 909] &, 1, 50] (* Paolo Xausa, May 29 2025 *)

Formula

a(n) = 45742 * a(n-1) mod (2^31-909).

A384398 Consecutive states of the linear congruential pseudo-random number generator 42024*s mod (2^31-847) when started at s=1.

Original entry on oeis.org

1, 42024, 1766016576, 222470065, 1089378807, 16633650, 1080597275, 348574654, 521074075, 1882288804, 923207262, 437695422, 522223563, 796268093, 293335050, 560863460, 1102302065, 1937961990, 1924405437, 1306764430, 38219148, 1951823205, 312782725, 1786493280
Offset: 1

Views

Author

Sean A. Irvine, May 27 2025

Keywords

Comments

Periodic with period 2^31-848.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[42024*#, 2^31 - 847] &, 1, 50] (* Paolo Xausa, May 29 2025 *)

Formula

a(n) = 42024 * a(n-1) mod (2^31-847).

A384399 Consecutive states of the linear congruential pseudo-random number generator 41546*s mod (2^31-837) when started at s=1.

Original entry on oeis.org

1, 41546, 1726070116, 415531613, 62076069, 2032989474, 2081730174, 1986561601, 1628882794, 2086219292, 1660453472, 1609609959, 240622074, 352201199, 1750622311, 406689858, 2089566331, 1130153051, 774477142, 692384319, 266663829, 2099100496, 2099734917
Offset: 1

Views

Author

Sean A. Irvine, May 27 2025

Keywords

Comments

Periodic with period 2^31-838.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[41546*#, 2^31 - 837] &, 1, 50] (* Paolo Xausa, May 30 2025 *)

Formula

a(n) = 41546 * a(n-1) mod (2^31-837).
Showing 1-10 of 70 results. Next