A384971 Consecutive internal states of the linear congruential pseudo-random number generator (106*s + 1283) mod 6075 when started at 1.
1, 1389, 2717, 3760, 4968, 5441, 904, 5982, 3575, 3583, 4431, 3194, 5722, 315, 4298, 1246, 5784, 812, 2305, 2613, 4886, 2824, 2952, 4370, 2803, 726, 5339, 2242, 2010, 1718, 1141, 729, 5657, 5575, 2958, 5006, 3394, 2622, 5840, 673, 5796, 2084, 3487, 330, 5888
Offset: 1
References
- William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..6075
- W. E. Sharp and Carter Bays, A review of portable random number generators, Computers and Geosciences, 18, 1 (1982), 79-87.
- Index entries for sequences related to pseudo-random numbers.
- Index entries for linear recurrences with constant coefficients, order 6075.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(106*a(n-1)+1283, 6075)) end: seq(a(n), n=1..45); # Alois P. Heinz, Jun 13 2025
-
Mathematica
NestList[Mod[106*# + 1283, 6075] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)
Formula
a(n) = (106*a(n-1) + 1283) mod 6075.
Comments