cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383126 Consecutive internal states of the linear congruential pseudo-random number generator (281*s + 28411) mod 134456 when started at 1.

Original entry on oeis.org

1, 28692, 23503, 44410, 3213, 124528, 62219, 32670, 65673, 62052, 120199, 55874, 132109, 41184, 37899, 56006, 34745, 110924, 4263, 16210, 11917, 15688, 134147, 76038, 16585, 117292, 45743, 108874, 100493, 31184, 51475, 106094, 126049, 86252, 63143, 23402
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 134456.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(281*a(n-1)+28411, 134456))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[281*# + 28411, 134456] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (281*a(n-1) + 28411) mod 134456.

A383127 Consecutive internal states of the linear congruential pseudo-random number generator (205*s + 29573) mod 139968 when started at 1.

Original entry on oeis.org

1, 29778, 115439, 39976, 106509, 28910, 77467, 93924, 108377, 131914, 58119, 46688, 82789, 65190, 96563, 89500, 41265, 90818, 31519, 52440, 2237, 68254, 24843, 83540, 79177, 24570, 27575, 83728, 117717, 87062, 101347, 90444, 94817, 11506, 8847, 23624, 113581
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 139968.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(205*a(n-1)+29573, 139968))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[205*# + 29573, 139968] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (205*a(n-1) + 29573) mod 139968.

A385279 Consecutive states of the linear congruential pseudo-random number generator (625*s + 6571) mod 31104 when started at s=1.

Original entry on oeis.org

1, 7196, 25095, 14530, 5453, 24360, 21715, 17102, 26649, 21556, 11039, 858, 14053, 18368, 9195, 30310, 7985, 20556, 8119, 10994, 3837, 9688, 27395, 21246, 3913, 26084, 10575, 21898, 7061, 2928, 1435, 1430, 29409, 4732, 9191, 27810, 685, 30344, 29235, 20398
Offset: 1

Views

Author

Sean A. Irvine, Jun 23 2025

Keywords

Comments

Periodic with period 31104.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(625*a(n-1)+6571, 31104))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[625*# + 6571, 31104] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (625 * a(n-1) + 6571) mod 31104.

A385338 Consecutive states of the linear congruential pseudo-random number generator (421*s + 17117) mod 81000 when started at s=1.

Original entry on oeis.org

1, 17538, 29615, 11032, 44589, 78086, 5323, 71100, 61217, 31474, 64671, 27608, 57085, 73902, 25859, 49756, 66393, 23570, 58087, 9744, 69341, 49678, 33555, 49772, 73129, 24426, 13463, 15040, 30957, 9014, 5011, 20748, 4025, 10642, 42399, 47096, 80533, 63510
Offset: 1

Views

Author

Sean A. Irvine, Jun 25 2025

Keywords

Comments

Periodic with period 81000.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(421*a(n-1)+17117, 81000))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[421*# + 17117, 81000] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (421 * a(n-1) + 17117) mod 81000.
Showing 1-4 of 4 results.