cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A385002 Consecutive states of the linear congruential pseudo-random number generator (211*s + 1663) mod 7875 when started at s=1.

Original entry on oeis.org

1, 1874, 3327, 2785, 6548, 5166, 4939, 4292, 1650, 3313, 7706, 5379, 2632, 5765, 5328, 7621, 3194, 6222, 7255, 4718, 4911, 6259, 7187, 6120, 1483, 7451, 6699, 5527, 2360, 3498, 7366, 4514, 1242, 3850, 2888, 4656, 7579, 2207, 2715, 7528, 7196, 144, 547, 6830
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 7875.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(211*a(n-1)+1663, 7875))
        end:
    seq(a(n), n=1..44);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    NestList[Mod[211*# + 1663, 7875] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (211 * a(n-1) + 1663) mod 7875.

A385003 Consecutive states of the linear congruential pseudo-random number generator (421*s + 1663) mod 7875 when started at s=1.

Original entry on oeis.org

1, 2084, 4902, 2155, 3293, 2016, 7774, 6392, 7320, 4258, 6656, 339, 2632, 7235, 7848, 6046, 3404, 1497, 1900, 6188, 186, 1219, 2987, 7065, 7153, 4826, 1659, 7102, 6980, 2868, 4216, 4724, 5967, 1645, 1208, 6231, 2539, 7457, 6810, 2173, 2996, 2979, 3697, 6725
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 7875.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(421*a(n-1)+1663, 7875))
        end:
    seq(a(n), n=1..44);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    NestList[Mod[421*# + 1663, 7875] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (421 * a(n-1) + 1663) mod 7875.

A384152 Consecutive states of the linear congruential pseudo-random number generator used by OMNITAB II when started at 1.

Original entry on oeis.org

1, 125, 7433, 3429, 2641, 2445, 2521, 3829, 3489, 1949, 6057, 3461, 6641, 2733, 5753, 6421, 8001, 701, 5705, 421, 3473, 8141, 1817, 5941, 5345, 4573, 6377, 2501, 1329, 2285, 7097, 2389, 3713, 5373, 8073, 1509, 209, 1549, 5209, 3957, 3105, 3101, 2601, 5637, 113
Offset: 1

Views

Author

Sean A. Irvine, May 20 2025

Keywords

Comments

Periodic with period length 2048.
A terrible generator with period much less than the modulus.
Also, RN5 of the IRCCRAND package.
Originally defined by Kruskal including the implementation s = 5*s mod 8192; s = 5*s mod 8192; s = 5*s mod 8192 (rather than s = 125*s mod 8192).

Crossrefs

Cf. A096550-A096561 (other pseudo-random number generators).
Cf. A383809, A384113, A384126, A384971, A384973 (other examples with short periods).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(125*a(n-1), 2^13))
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, May 21 2025
  • Mathematica
    NestList[Mod[125*#, 2^13] &, 1, 100] (* Paolo Xausa, May 21 2025 *)
  • PARI
    a(n) = lift(Mod(5,8192)^(3*n-3)) \\ Jianing Song, Jul 06 2025

Formula

a(n) = 125 * a(n-1) mod 2^13.

A385036 Consecutive states of the linear congruential pseudo-random number generator (419*s + 6173) mod 29282 when started at s=1.

Original entry on oeis.org

1, 6592, 15713, 1470, 7181, 28248, 12157, 4888, 4505, 19720, 11329, 9340, 25127, 22148, 3791, 13374, 17017, 20770, 12049, 18200, 18653, 3486, 2707, 27690, 12611, 19422, 3595, 19096, 13411, 3238, 15923, 1614, 8953, 9384, 14281, 16384, 19081, 7126, 5203, 19362
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 29282.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(419*a(n-1)+6173, 29282))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[419*# + 6173, 29282] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (419 * a(n-1) + 6173) mod 29282.

A385078 Consecutive states of the linear congruential pseudo-random number generator (967*s + 3041) mod 14406 when started at s=1.

Original entry on oeis.org

1, 4008, 3563, 5428, 8133, 1976, 12241, 12762, 12359, 11620, 2901, 13544, 5035, 2658, 9059, 4246, 3213, 12722, 2491, 6036, 5423, 3298, 8481, 7154, 6079, 3786, 4979, 6130, 9885, 10658, 9037, 11784, 3023, 1864, 4779, 8, 10777, 8862, 1025, 202, 11097, 1370, 2479
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 14406.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(967*a(n-1)+3041, 14406))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[967*# + 3041, 14406] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (967 * a(n-1) + 3041) mod 14406.

A384431 Consecutive states of the linear congruential pseudo-random number generator (430*s + 2531) mod 11979 when started at s=1.

Original entry on oeis.org

1, 2961, 5987, 1456, 5703, 11105, 10039, 6861, 5927, 11593, 4257, 254, 3940, 7692, 3887, 8860, 3009, 2669, 217, 9, 6401, 11770, 8493, 926, 5404, 2325, 8024, 2899, 3285, 1559, 2077, 9195, 3311, 760, 5898, 11102, 8749, 3195, 10775, 11887, 10887, 152, 7996, 2838
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 11979.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(430*a(n-1)+2531, 11979))
        end:
    seq(a(n), n=1..44);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    NestList[Mod[430*# + 2531, 11979] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (430 * a(n-1) + 2531) mod 11979.

A385037 Consecutive states of the linear congruential pseudo-random number generator (936*s + 1399) mod 6655 when started at s=1.

Original entry on oeis.org

1, 2335, 4119, 3538, 5432, 1331, 2730, 1159, 1458, 1812, 406, 2080, 5019, 753, 777, 3276, 6435, 1784, 818, 1722, 2681, 1880, 4159, 1048, 4042, 4671, 1120, 4884, 838, 477, 1986, 3550, 3354, 6238, 3732, 676, 1910, 5619, 3333, 6547, 136, 2250, 4419, 4828, 1662
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 6655.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(936*a(n-1)+1399, 6655))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[936*# + 1399, 6655] &, 1, 50] (* Paolo Xausa, Jun 16 2025 *)

Formula

a(n) = (936 * a(n-1) + 1399) mod 6655.

A385079 Consecutive states of the linear congruential pseudo-random number generator 228*s mod (2^16+1) when started at s=1.

Original entry on oeis.org

1, 228, 51984, 55692, 49135, 61490, 60339, 60059, 61756, 55450, 59496, 64466, 17960, 31586, 58075, 2626, 8895, 61950, 34145, 51694, 55109, 47285, 32912, 32718, 54023, 61825, 5645, 41857, 40531, 351, 14491, 27098, 17866, 10154, 21317, 10538, 43332, 49146, 63998
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 2^16.
Attributed by Sharp and Bays to L. Afflerbach.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(228*a(n-1), 65537))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[228*#, 65537] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)
  • PARI
    a(n) = lift(Mod(228, 65537)^(n-1)) \\ Jianing Song, Jun 17 2025

Formula

a(n) = 228 * a(n-1) mod (2^16+1).

A385038 Consecutive internal states of the linear congruential pseudo-random number generator (1366*s + 1283) mod 6075 when started at 1.

Original entry on oeis.org

1, 2649, 5192, 4030, 2313, 1841, 1039, 5082, 5645, 3178, 4881, 4454, 4372, 1710, 4343, 4621, 1644, 5312, 3925, 4683, 1286, 2284, 4752, 4415, 5773, 1851, 2549, 2242, 2055, 1763, 3841, 5364, 2057, 4495, 5703, 3431, 4204, 3072, 5885, 2968, 3546, 3344, 787, 1050
Offset: 1

Views

Author

Sean A. Irvine, Jun 13 2025

Keywords

Comments

Periodic with period 6075.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1366*a(n-1)+1283, 6075))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1366*# + 1283, 6075] &, 1, 50] (* Paolo Xausa, Jun 16 2025 *)

Formula

a(n) = (1366*a(n-1) + 1283) mod 6075.
Showing 1-9 of 9 results.