cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096881 Expansion of g.f. (1 + 4*x)/(1 - 17*x^2).

Original entry on oeis.org

1, 4, 17, 68, 289, 1156, 4913, 19652, 83521, 334084, 1419857, 5679428, 24137569, 96550276, 410338673, 1641354692, 6975757441, 27903029764, 118587876497, 474351505988, 2015993900449, 8063975601796, 34271896307633, 137087585230532, 582622237229761, 2330488948919044
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,17]; [n le 3 select I[n] else 17*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2016
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-17x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {0,17},{1,4},30] (* Harvey P. Dale, Jan 21 2012 *)
  • PARI
    Vec((1+4*x)/(1-17*x^2) + O(x^40)) \\ Michel Marcus, Jan 26 2016
    

Formula

a(n) = 3*a(n-1) + 4*a(n-2) + 17^floor((n-2)/2).
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*4^(n-2*k).
a(n) = 17*a(n-2), n>1. - Harvey P. Dale, Jan 21 2012
E.g.f.: cosh(sqrt(17)*x) + 4*sinh(sqrt(17)*x)/sqrt(17). - Stefano Spezia, Mar 31 2023

Extensions

More terms from Stefano Spezia, Mar 31 2023