cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096965 Number of sets of even number of even lists, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 37, 241, 2101, 18271, 201097, 2270017, 29668681, 410815351, 6238931821, 101560835377, 1765092183037, 32838929702671, 644215775792401, 13441862819232001, 293976795292186897, 6788407001443004647, 163735077313046119861, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;  `if`(n<4, [1$3, 7][n+1], ((2*n-3)
          *a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5)
          *a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2021
  • Mathematica
    Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)

Formula

E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).
a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - Vladimir Kruchinin, Mar 10 2013
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
From Alois P. Heinz, Dec 01 2021: (Start)
a(n) = A000262(n) - A096939(n).
a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)

Extensions

More terms from Robert G. Wilson v, Aug 19 2004
a(0)=1 prepended by Alois P. Heinz, Dec 01 2021