A096965 Number of sets of even number of even lists, cf. A000262.
1, 1, 1, 7, 37, 241, 2101, 18271, 201097, 2270017, 29668681, 410815351, 6238931821, 101560835377, 1765092183037, 32838929702671, 644215775792401, 13441862819232001, 293976795292186897, 6788407001443004647, 163735077313046119861, 4142654439686285737201
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1$3, 7][n+1], ((2*n-3) *a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5) *a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2)) end: seq(a(n), n=0..25); # Alois P. Heinz, Dec 01 2021
-
Mathematica
Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)
Formula
E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).
a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - Vladimir Kruchinin, Mar 10 2013
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
From Alois P. Heinz, Dec 01 2021: (Start)
a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)
Extensions
More terms from Robert G. Wilson v, Aug 19 2004
a(0)=1 prepended by Alois P. Heinz, Dec 01 2021