A097054 Nonsquare perfect powers.
8, 27, 32, 125, 128, 216, 243, 343, 512, 1000, 1331, 1728, 2048, 2187, 2197, 2744, 3125, 3375, 4913, 5832, 6859, 7776, 8000, 8192, 9261, 10648, 12167, 13824, 16807, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Perfect Power.
- Eric Weisstein's World of Mathematics, Odd Power.
Crossrefs
Programs
-
Haskell
import Data.Map (singleton, findMin, deleteMin, insert) a097054 n = a097054_list !! (n-1) a097054_list = f 9 (3, 2) (singleton 4 (2, 2)) where f zz (bz, be) m | xx < zz && even be = f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m) | xx < zz = xx : f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m) | xx > zz = f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m) | otherwise = f (zz + 2 * bz + 1) (bz + 1, 2) m where (xx, (bx, be)) = findMin m -- Reinhard Zumkeller, Mar 28 2014
-
Maple
# uses code of A001597 for n from 4 do if not issqr(n) and isA001597(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Jan 13 2021
-
Mathematica
nn = 50653; Select[Union[Flatten[Table[n^i, {i, Prime[Range[2, PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]], ! IntegerQ[Sqrt[#]] &] (* T. D. Noe, Apr 19 2011 *)
-
PARI
is(n)=ispower(n)%2 \\ Charles R Greathouse IV, Aug 28 2016
-
PARI
list(lim)=my(v=List()); forprime(e=3,logint(lim\=1,2), for(b=2,sqrtnint(lim,e), if(!issquare(b), listput(v,b^e)))); Set(v) \\ Charles R Greathouse IV, Jan 09 2023
-
Python
from sympy import mobius, integer_nthroot def A097054(n): def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(3,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
Formula
A052409(a(n)) is odd. - Reinhard Zumkeller, Mar 28 2014
Sum_{n>=1} 1/a(n) = 1 - zeta(2) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 0.2295303015... - Amiram Eldar, Dec 21 2020
Comments