cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097054 Nonsquare perfect powers.

Original entry on oeis.org

8, 27, 32, 125, 128, 216, 243, 343, 512, 1000, 1331, 1728, 2048, 2187, 2197, 2744, 3125, 3375, 4913, 5832, 6859, 7776, 8000, 8192, 9261, 10648, 12167, 13824, 16807, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653
Offset: 1

Views

Author

Hugo Pfoertner, Jul 21 2004

Keywords

Comments

Terms of A001597 that are not in A000290.
All terms of this sequence are also in A070265 (odd powers), but omitting those odd powers that are also a square (e.g. 64=4^3=8^2).

Crossrefs

Cf. A001597 (perfect powers), A000290 (the squares), A008683, A070265 (odd powers), A097055, A097056, A239870, A239728, A093771.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a097054 n = a097054_list !! (n-1)
    a097054_list = f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, be) m
        | xx < zz && even be =
                    f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m)
        | xx < zz = xx :
                    f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m)
        | xx > zz = f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz + 2 * bz + 1) (bz + 1, 2) m
        where (xx, (bx, be)) = findMin m
    -- Reinhard Zumkeller, Mar 28 2014
    
  • Maple
    # uses code of A001597
    for n from 4 do
        if not issqr(n) and isA001597(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Jan 13 2021
  • Mathematica
    nn = 50653; Select[Union[Flatten[Table[n^i, {i, Prime[Range[2, PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]], ! IntegerQ[Sqrt[#]] &] (* T. D. Noe, Apr 19 2011 *)
  • PARI
    is(n)=ispower(n)%2 \\ Charles R Greathouse IV, Aug 28 2016
    
  • PARI
    list(lim)=my(v=List()); forprime(e=3,logint(lim\=1,2), for(b=2,sqrtnint(lim,e), if(!issquare(b), listput(v,b^e)))); Set(v) \\ Charles R Greathouse IV, Jan 09 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A097054(n):
        def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(3,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

A052409(a(n)) is odd. - Reinhard Zumkeller, Mar 28 2014
Sum_{n>=1} 1/a(n) = 1 - zeta(2) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 0.2295303015... - Amiram Eldar, Dec 21 2020