A097056 Numbers n such that the interval n^2 < x < (n+1)^2 contains two or more distinct nonsquare perfect powers A097054.
5, 11, 46, 2536, 558640, 572783, 3362407, 7928108, 8928803, 67460050, 106938971, 1763350849, 2501641555, 2756149047, 4584349318, 5713606932, 17941228664, 375376083513, 411124334926, 452894760105, 1167680330892, 1933159894790, 1946131548918, 2506032014606, 2507269866902, 8217688694093
Offset: 1
Keywords
Examples
a(1) = 5: 5^2 < 3^3 < 2^5 < 6^2, a(2) = 11: 11^2 < 5^3 < 2^7 < 12^2, a(3) = 46: 46^2 = 2116 < 3^7 = 2187 < 13^3 = 2197 < 47^2 = 2209. a(4) = 2536: 2536^2 = 6431296 < 186^3 = 6434856 < 23^5 = 6436343 < 2537^2 = 6436369. 22 is not in the sequence because 2^9 and 8^3 (22^2 < 512 < 23^2) are not distinct. Also, 181 is not listed since between 181^2 and 182^2 there is only 32^3 = 8^5.
Links
- T. D. Noe, Table of n, a(n) for n = 1..180 (using the b-file from A117934)
Crossrefs
Programs
-
PARI
is(n)=my(s,t); forprime(p=3,2*log(n+1.5)\log(2), t=floor((n+1)^(2/p)); if(t^p>n^2 && !ispower(t) && s++ > 1, return(1))); 0 \\ Charles R Greathouse IV, Dec 11 2012
-
PARI
haspow(lower,upper,eMin,eMax)=if(sqrtnint(upper,3)^3>lower, return(1)); forprime(e=eMin,eMax, if(sqrtnint(upper,e)^e>lower, return(1))); 0 list(lim)=lim\=1; my(v=List(),M=(lim+1)^2,L=logint(M,2),s); forprime(e=5,L, forprime(p=2,sqrtnint(M,e), s=sqrtint(p^e); if(haspow(s^2,(s+1)^2-1,e+1,L) && s<=lim, listput(v,s)))); Set(v) \\ Charles R Greathouse IV, Nov 05 2015
Extensions
a(5)-a(20) from Don Reble
a(21)-a(26) from David Wasserman, Dec 17 2007
Comments