cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097073 Expansion of (1-x+2*x^2)/((1+x)*(1-2*x)).

Original entry on oeis.org

1, 0, 4, 4, 12, 20, 44, 84, 172, 340, 684, 1364, 2732, 5460, 10924, 21844, 43692, 87380, 174764, 349524, 699052, 1398100, 2796204, 5592404, 11184812, 22369620, 44739244, 89478484, 178956972, 357913940, 715827884, 1431655764, 2863311532
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Partial sums are A097074.
Pairwise sums are {1, 1, 4, 16, 32, ...} or 2^n -Sum_{k=0..n} binomial(n,k)*(-1)^(n+k)*k.

Crossrefs

Cf. A001045, A078008 (form a(n)=2^n-a(n-1)).

Programs

Formula

a(n) = (2*2^n + 4*(-1)^n)/3 - 0^n.
a(n) = A001045(n+1) + (-1)^n - 0^n.
a(n) = 2*A078008(n) - 0^n.
a(2*n+1) + a(2*n+2) = A000302(n+1). - Paul Curtz, Jun 30 2008
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + 2*x^2 + (4*k+5)*x - x*(4*k+1 + 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
E.g.f.: (1/3)*( 2*exp(2*x) + 4*exp(-x) - 3 ). - G. C. Greubel, Aug 19 2022

Extensions

Obscure variable k in Orlovsky comment replaced with a(n) by R. J. Mathar, Apr 23 2009