A097080 a(n) = 2*n^2 - 2*n + 3.
3, 7, 15, 27, 43, 63, 87, 115, 147, 183, 223, 267, 315, 367, 423, 483, 547, 615, 687, 763, 843, 927, 1015, 1107, 1203, 1303, 1407, 1515, 1627, 1743, 1863, 1987, 2115, 2247, 2383, 2523, 2667, 2815, 2967, 3123, 3283, 3447, 3615, 3787, 3963, 4143, 4327, 4515, 4707
Offset: 1
References
- M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996, p. 7.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Steven Edwards and William Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., Vol. 55, No. 4 (2017), pp. 356-366.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- Kival Ngaokrajang, Illustration of the Pappus chain of the symmetric Arbelos.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a097080 n = 2 * n * (n - 1) + 3 -- Reinhard Zumkeller, Dec 15 2013
-
Mathematica
Table[2n^2-2n+3,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{3,7,15},50] (* Harvey P. Dale, Aug 02 2014 *) CoefficientList[Series[(3 - 2 x + 3 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 03 2014 *)
-
PARI
a(n)=2*n^2-2*n+3 \\ Charles R Greathouse IV, Jun 13 2012
-
PARI
Vec(x*(3-2*x+3*x^2)/(1-x)^3 + O(x^50)) \\ Altug Alkan, Nov 11 2015
Formula
a(n) = 4*(n-1) + a(n-1) for n > 1, a(1)=3. - Vincenzo Librandi, Nov 16 2010
a(n) = A046092(n) + 3. - Reinhard Zumkeller, Dec 15 2013
G.f.: x*(3 - 2*x + 3*x^2)/(1 - x)^3. - Vincenzo Librandi, Aug 03 2014
a(n) = A027575(n-2)/2. - Michel Marcus, Nov 11 2015
Sum_{n>=1} 1/a(n) = Pi*tanh(sqrt(5)*Pi/2)/(2*sqrt(5)). - Amiram Eldar, Dec 23 2022
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 3) - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments