cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097137 Convolution of 3^n and floor(n/2).

Original entry on oeis.org

0, 0, 1, 4, 14, 44, 135, 408, 1228, 3688, 11069, 33212, 99642, 298932, 896803, 2690416, 8071256, 24213776, 72641337, 217924020, 653772070, 1961316220, 5883948671, 17651846024, 52955538084, 158866614264, 476599842805
Offset: 0

Views

Author

Paul Barry, Jul 29 2004

Keywords

Comments

a(n+1) gives partial sums of A033113 and second partial sums of A015518(n+1). Binomial transform of {0,0,1,1,4,4,16,16,...}.
Partial sums of floor(3^n/8) = round(3^n/8). - Mircea Merca, Dec 28 2010

Crossrefs

Column k=3 of A368296.
Cf. A033113.

Programs

  • GAP
    a:=[0,0,1,4];; for n in [5..30] do a[n]:=4*a[n-1]-2*a[n-2]-4*a[n-3] +3*a[n-4]; od; a; # G. C. Greubel, Jul 14 2019
  • Magma
    [Round((3*3^n-4*n-4)/16): n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A097137 := proc(n) add( floor(3^i/8),i=0..n) ; end proc:
  • Mathematica
    CoefficientList[Series[x^2/((1-x)^2(1-3x)(1+x)),{x,0,30}],x]  (* Harvey P. Dale, Mar 11 2011 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(x^2/((1-x)^2*(1-3*x)*(1+x)))) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    (x^2/((1-x)^2*(1-3*x)*(1+x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 14 2019
    

Formula

G.f.: x^2/((1-x)^2*(1-3*x)*(1+x)).
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) + 3*a(n-4).
a(n) = Sum_{k=0..n} floor((n-k)/2)*3^k = Sum_{k=0..n} floor(k/2)*3^(n-k).
From Mircea Merca, Dec 26 2010: (Start)
a(n) = round((3*3^n - 4*n - 4)/16) = floor((3*3^n - 4*n - 3)/16) = ceiling((3*3^n - 4*n - 5)/16) = round((3*3^n - 4*n - 3)/16).
a(n) = a(n-2) + (3^(n-1)-1)/2, n > 2. (End)
a(n) = (floor(3^(n+1)/8) - floor((n+1)/2))/2. - Seiichi Manyama, Dec 22 2023