cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097164 Expansion of (1+3x)/((1-x)(1-4x^2)).

Original entry on oeis.org

1, 4, 8, 20, 36, 84, 148, 340, 596, 1364, 2388, 5460, 9556, 21844, 38228, 87380, 152916, 349524, 611668, 1398100, 2446676, 5592404, 9786708, 22369620, 39146836, 89478484, 156587348, 357913940, 626349396, 1431655764, 2505397588
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Partial sums of A084221. a(n) = A097163(n+1)/4. Third binomial transform is A097165.
a(n+1) = 4*A097163(n). - Zerinvary Lajos, Mar 17 2008
See A133628 for an essentially identical sequence. - R. J. Mathar, Jun 08 2008

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=4*a[n-2]+4 od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    CoefficientList[Series[(1+3x)/((1-x)(1-4x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{1,4,-4},{1,4,8},50] (* Harvey P. Dale, Jul 11 2023 *)

Formula

a(n) = 5*2^n/2 - (-2)^n/6 - 4/3;
a(n) = a(n-1) + 4a(n-2) - 4a(n-3).
G.f. ( 1+3*x ) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Jul 06 2011

A097162 a(n) = Sum_{k=0..n} C(floor((n+1)/2),floor((k+1)/2))*2^k.

Original entry on oeis.org

1, 3, 7, 21, 37, 123, 187, 681, 937, 3663, 4687, 19341, 23437, 100803, 117187, 520401, 585937, 2667543, 2929687, 13599861, 14648437, 69047883, 73242187, 349433721, 366210937, 1763945823, 1831054687, 8886837981, 9155273437, 44702625363
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    A097162:=n->add(binomial(floor((n+1)/2),floor((k+1)/2))*2^k, k=0..n): seq(A097162(n), n=0..30); # Wesley Ivan Hurt, Sep 18 2014
  • Mathematica
    LinearRecurrence[{1,9,-9,-20,20},{1,3,7,21,37},50] (* Vincenzo Librandi, Jan 30 2012 *)

Formula

G.f.: (1+2*x-5*x^2-4*x^3)/((1-x)*(1-4*x^2)*(1-5*x^2)).
a(n) = (3/4-3*sqrt(5)/4)*(-sqrt(5))^n +(3/4+3*sqrt(5)/4)*(sqrt(5))^n-(2^n-(-2)^n)-1/2.
a(2*n) = A057651(n); a(2*n+1)=3*A097165(n).
a(n+5) = 20*a(n)-20*a(n+1)-9*a(n+2)+9*a(n+3)+a(n+4). - Robert Israel, Sep 18 2014

A155485 a(n) = 5^n + (1 - 4^n)/3.

Original entry on oeis.org

1, 4, 20, 104, 540, 2784, 14260, 72664, 368780, 1865744, 9416100, 47430024, 238548220, 1198333504, 6014037140, 30159664184, 151156234860, 757212830064, 3791790773380, 18981860359144, 95000927764700, 475371142699424, 2378321729000820, 11897472707018904
Offset: 0

Views

Author

Paul Curtz, Jan 23 2009

Keywords

Programs

Formula

a(n) = A000351(n) - A001045(2n).
a(n) = 10a(n-1) - 29a(n-2) + 20a(n-3), as in A097165.
From R. J. Mathar, Feb 27 2009: (Start)
G.f.: (1-3x)^2/((1-x)(1-4x)(1-5x)).
a(n) = A097165(n) - 3*A097165(n-1). (End)

Extensions

Edited, Lava definition adopted, and extended by R. J. Mathar, Feb 27 2009
Showing 1-3 of 3 results.