A097188 G.f. A(x) satisfies A057083(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097186.
1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4, eq.(23) for l=4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1 - (1-9*x)^(1/3))/(3*x) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series((1-(1-9*x)^(1/3))/(3*x), x, n+2), x, n), n = 0..25); # G. C. Greubel, Sep 17 2019
-
Mathematica
Table[FullSimplify[9^n * Gamma[n+2/3] / ((n+1) * Gamma[2/3] * Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *) CoefficientList[Series[(1-(1 - 9 x)^(1/3))/(3 x), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2014 *)
-
PARI
a(n)=polcoeff((1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x),n,x)
-
Sage
def A097188_list(prec): P.
= PowerSeriesRing(QQ, prec) return P((1 - (1-9*x)^(1/3))/(3*x)).list() A097188_list(25) # G. C. Greubel, Sep 17 2019
Formula
G.f.: A(x) = (1 - (1-9*x)^(1/3))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A057083(x)).
a(n) = A004988(n)/(n+1).
a(n) = A025748(n+1).
a(n) = 3*A034164(n-1) for n>=1.
x*A(x) is the compositional inverse of x-3*x^2+3*x^3. - Ira M. Gessel, Feb 18 2012
a(n) = 1/(n+1) * Sum_{k=1..n} binomial(k,n-k) * 3^(k)*(-1)^(n-k) * binomial(n+k,n), if n>0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
Conjecture: (n+1)*a(n) +3*(-3*n+1)*a(n-1)=0. - R. J. Mathar, Nov 16 2012
a(n) = 9^n * Gamma(n+2/3) / ((n+1) * Gamma(2/3) * Gamma(n+1)). - Vaclav Kotesovec, Feb 09 2014
Sum_{n>=0} 1/a(n) = 21/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022