cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A153501 Abundant numbers n such that n/(sigma(n)-2n) is an integer.

Original entry on oeis.org

12, 18, 20, 24, 40, 56, 88, 104, 120, 196, 224, 234, 368, 464, 650, 672, 992, 1504, 1888, 1952, 3724, 5624, 9112, 11096, 13736, 15376, 15872, 16256, 17816, 24448, 28544, 30592, 32128, 77744, 98048, 122624, 128768, 130304, 174592, 396896, 507392
Offset: 1

Views

Author

Donovan Johnson, Jan 02 2009

Keywords

Comments

Sigma(n)-2n is the abundance of n.
The only odd term in this sequence < 2*10^12 is 173369889. - Donovan Johnson, Feb 15 2012
Equivalently, the abundancy of n, ab=sigma(n)/n, satisfies the following relation: numerator(ab) = 2*denominator(ab)+1, that is, ab=(2k+1)/k where k is the integer ratio mentioned in definition. - Michel Marcus, Nov 07 2014
The tri-perfect numbers (A005820) are in this sequence, since their abundancy is 3n/n = 3 = (2k+1)/k with k=1. - Michel Marcus, Nov 07 2014

Examples

			The abundance of 174592 = sigma(174592)-2*174592 = 43648. 174592/43648 = 4.
		

Crossrefs

Intersection of A097498 and A005101.
Disjoint union of A181595 and A005820.

Programs

  • Maple
    filter:= proc(n) local s; s:= numtheory:-sigma(n); (s > 2*n) and (n mod (s-2*n) = 0) end proc:
    select(filter, [$1..10^5]); # Robert Israel, Nov 07 2014
  • Mathematica
    filterQ[n_] := Module[{s = DivisorSigma[1, n]}, s > 2n && Mod[n, s - 2n] == 0];
    Select[Range[10^6], filterQ] (* Jean-François Alcover, Feb 01 2023, after Robert Israel *)
  • PARI
    isok(n) = ((ab = (sigma(n)-2*n))>0) && (n % ab == 0) \\ Michel Marcus, Jul 16 2013
    
  • Sage
    def A153501_list(len):
        def is_A153501(n):
            t = sigma(n,1) - 2*n
            return t > 0 and t.divides(n)
        return filter(is_A153501, range(1,len))
    A153501_list(1000) # Peter Luschny, Nov 07 2014

A181598 Numbers m with divisor 8 | m and abundance sigma(m)-2*m = 8.

Original entry on oeis.org

56, 368, 11096, 17816, 77744, 128768, 2087936, 2291936, 13174976, 35021696, 45335936, 381236216, 4856970752, 6800228816, 8589344768, 1461083549696, 1471763808896, 2199013818368, 19502341651712, 118123076415296, 933386556194816, 144141575952121856, 417857739454939136
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Comments

a(19) > 10^13. - Giovanni Resta, Apr 02 2014

Crossrefs

Programs

  • PARI
    isok(n) = !(n % 8) && (sigma(n) - 2*n == 8); \\ Michel Marcus, Feb 08 2016

Formula

A088833 INTERSECT A008590. - R. J. Mathar, Nov 04 2010

Extensions

Definition rephrased by R. J. Mathar, Nov 04 2010
a(16)-a(17) from Donovan Johnson, Dec 08 2011
a(18) from Giovanni Resta, Apr 02 2014
a(19)-a(23) from the b-file at A088833 added by Amiram Eldar, Mar 11 2024

A271816 Deficient-perfect numbers: Deficient numbers n such that n/(2n-sigma(n)) is an integer.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 44, 64, 128, 136, 152, 184, 256, 512, 752, 884, 1024, 2048, 2144, 2272, 2528, 4096, 8192, 8384, 12224, 16384, 17176, 18632, 18904, 32768, 32896, 33664, 34688, 49024, 63248, 65536, 85936, 106928, 116624, 117808, 131072, 262144, 524288, 526688, 527872, 531968, 556544, 589312, 599072, 654848, 709784
Offset: 1

Views

Author

Keywords

Comments

Every power of 2 is part of this sequence, with 2n - sigma(n) = 1.
Any odd element of this sequence must be a perfect square with at least four distinct prime factors (Tang and Feng). The smallest odd element of this sequence is a(74) = 9018009 = 3^2 * 7^2 * 11^2 * 13^2, with 2n - sigma(n) = 819.
a(17) = 884 = 2^2 * 13 * 17 is the smallest element with three distinct prime factors.
For all n > 1 in this sequence, 5/3 <= sigma(n)/n < 2. - Charles R Greathouse IV, Apr 15 2016

Examples

			When n = 1, 2, 4, 8, 2n - sigma(n) = 1.
When n = 10, sigma(10) = 18 and so 2*10 - 18 = 2, which divides 10.
		

Crossrefs

Deficient analog of A153501. Setwise difference A097498\A153501.
Contains A000079.

Programs

  • Maple
    q:= k-> (s-> s>0 and irem(k, s)=0)(2*k-numtheory[sigma](k)):
    select(q, [$1..500000])[];  # Alois P. Heinz, Aug 26 2023
  • Mathematica
    ok[n_] := Block[{d = DivisorSigma[1, n]}, d < 2*n && Divisible[n, 2*n - d]]; Select[Range[10^5], ok] (* Giovanni Resta, Apr 14 2016 *)
  • PARI
    isok(n) = ((ab = (sigma(n)-2*n))<0) && (n % ab == 0); \\ Michel Marcus, Apr 15 2016

Formula

2^k is always an element of this sequence.
If 2^(k+1) + 2^t - 1 is an odd prime and t <= k, then n = 2^k(2^(k+1) + 2^t - 1) is deficient-perfect with 2n - sigma(n) = 2^t. In fact, these are the only terms with two distinct prime factors. (Tang et al.)

A379236 Numbers k such that x=(sigma(k) XOR 2*k) divides k in carryless binary arithmetic, when the binary expansions of k and x are interpreted as polynomials in ring GF(2)[X].

Original entry on oeis.org

10, 12, 18, 20, 24, 40, 56, 88, 104, 116, 136, 184, 196, 224, 312, 368, 428, 464, 520, 528, 650, 672, 760, 884, 992, 1472, 1504, 1888, 1952, 2528, 3424, 3724, 4832, 5312, 6464, 7136, 9112, 11096, 11288, 11744, 13216, 15352, 15376, 15872, 15968, 16256, 17816, 17964, 22616, 24448, 26728, 28544, 29296, 30592, 30656
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2025

Keywords

Comments

Among the first 484 terms, there are no odd numbers, the only squares are 196, 15376, 1032256, and 18 is the only twice square.

Examples

			196 is a term as sigma(196) = 399, 2*196 XOR 399 = 7 is not zero, and A048720(7, 89) = 399.
		

Crossrefs

Cf. A379234 (subsequence).
Cf. also A097498 (= A153501 U A271816).

Programs

  • PARI
    divides_in_GF2X(a,b) = { my(Pa=Pol(binary(a))*Mod(1, 2), Pb=Pol(binary(b))*Mod(1, 2)); !lift(Pa % Pb); };
    is_A379236(n) = { my(s=sigma(n), x=bitxor(2*n, s)); (x && divides_in_GF2X(n, x)); };

Formula

{k such that k = A048720(A318467(k), x) for some x > 0}.
{k not in A000396 such that A280500(k, A318467(k)) > 0}.

A181601 Numbers m with divisor 32 | m and abundance sigma(m)-2*m = 32.

Original entry on oeis.org

992, 28544, 122624, 507392, 537248, 698528, 791264, 1081568, 1279136, 2279072, 5029184, 307801856, 623799776, 712023296, 11196261056, 14809750016, 34355412992, 59640734144, 340536203264, 637707589184, 1091487733184, 1473169206272, 1709840369984, 2526522709184
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Comments

A subsequence of A175989. - R. J. Mathar, Nov 04 2010

Crossrefs

Programs

  • Mathematica
    Select[32Range[1000000],DivisorSigma[1,#]-2#==32&] (* Harvey P. Dale, Aug 16 2011 *)

Extensions

Definition rephrased, a(5)-a(11) appended - R. J. Mathar, Nov 04 2010
a(12)-a(24) from Donovan Johnson, Dec 08 2011

A181599 Numbers m with divisor 16 | m and abundance sigma(m)-2*m = 16.

Original entry on oeis.org

1504, 30592, 4526272, 8353792, 361702144, 1081850752, 1845991216, 2146926592, 21818579968, 34357510144, 228354264064, 549746900992, 2169800814592, 8796057370624, 24038405705152, 80952364306432, 140737345748992, 2737658648639872, 23810602502029312, 36979953305070592
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Crossrefs

Formula

A008598 INTERSECT A141547. - R. J. Mathar, Nov 04 2010

Extensions

Definition rephrased - R. J. Mathar, Nov 04 2010
a(9)-a(13) from Donovan Johnson, Dec 08 2011
a(14)-a(20) from the b-file at A141547 added by Amiram Eldar, Aug 03 2024
Showing 1-6 of 6 results.