cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A097760 Index of zero values in A097759; also index of -1 values in A097563 and A097758.

Original entry on oeis.org

68, 81, 88, 95, 99, 104, 107, 115, 116, 118, 126, 134, 139, 149, 150, 152, 153, 157, 163, 164, 169, 177, 178, 180, 181, 184, 193, 197, 204, 207, 208, 209, 211, 212, 215, 217, 220, 225, 226, 227, 228, 229, 230, 231, 232, 236, 237, 238, 239, 244, 246, 247
Offset: 1

Views

Author

Ray Chandler, Sep 06 2004

Keywords

Comments

A097759(a(n))=0; A097758(a(n))=-1; A097563(a(n))=-1.

Crossrefs

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 06 2021

A275154 Smallest positive integer which can be represented as the sum of distinct positive cubes in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 216, 729, 1072, 1736, 1737, 2465, 2800, 2808, 3619, 3276, 4257, 4131, 4662, 4473, 5292, 5265, 5328, 6084, 5481, 6202, 5985, 6777, 6840, 7056, 7372, 7659, 7560, 7588, 7380, 7596, 7722, 8037, 8190, 8576, 8064, 8316, 9297, 9549, 8380, 9045, 9261, 9451, 9360, 8919, 10044, 9108
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 01 2017

Keywords

Comments

For all k in [63159..10^9], Q(k,500) >= 2092 so Q(k, infinity) >= 2092 for k>=63159 where Q(k, u) is the number of ways to write k as a sum of distinct cubes c where c <= u^3 (see proof in Du Link). Hence, a(2091)=0. - Zhao Hui Du, Jun 22 2025

Examples

			a(4) = 1072 because 1072 = 7^3 + 9^3 = 2^3 + 4^3 + 10^3 = 1^3 + 6^3 + 7^3 + 8^3 = 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 and this is the smallest number that can be written as the sum of distinct positive cubes in 4 different ways.
		

Crossrefs

Formula

A279329(a(n)) = n.

A350241 a(n) is the smallest number which can be represented as the sum of n distinct nonzero squares in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 65, 101, 142, 175, 255, 316, 380, 501, 625, 794, 995, 1155, 1456, 1696, 2012, 2373, 2709, 3118, 3566, 4158, 4608, 5211, 5852, 6500, 7221, 8065, 8906, 9766, 11089, 11855, 12868, 14020, 15337, 16601, 17854, 19255, 20840, 22364, 23964, 25813, 27665, 29650, 31635
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2021

Keywords

Examples

			For n = 2: 65 = 1^2 + 8^2 = 4^2 + 7^2.
For n = 3: 101 = 1^2 + 6^2 + 8^2 = 2^2 + 4^2 + 9^2 = 4^2 + 6^2 + 7^2.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Dec 21 2021

A097757 Table read by rows where row n consists of integers that can be expressed as the sum of distinct squares in exactly n ways.

Original entry on oeis.org

2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128, 0, 1, 4, 5, 9, 10, 13, 14, 16, 17, 20, 21, 34, 35, 36, 37, 38, 39, 40, 42, 51, 52, 55, 56, 57, 58, 59, 63, 64, 68, 71, 73, 80, 83, 88, 97, 124, 132, 25, 26, 29
Offset: 0

Views

Author

Ray Chandler, Sep 06 2004

Keywords

Comments

Row 0 is A001422.
Only positive squares are allowed, not 0. The inclusion of 0 in row 1 is for the empty sum, not for a sum with a single 0. - Franklin T. Adams-Watters, Sep 20 2009

Examples

			Table begins:
Row 0: 2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128;
Row 1: 0, 1, 4, 5, 9, 10, 13, 14, 16, 17, 20, 21, 34, 35, 36, 37, 38, 39, 40, 42, 51, 52, 55, 56, 57, 58, 59, 63, 64, 68, 71, 73, 80, 83, 88, 97, 124, 132;
Row 2: 25, 26, 29, 30, 41, 45, 46, 49, 53, 54, 61, 69, 70, 77, 79, 82, 84, 87, 93, 103, 107, 133, 144, 148, 188;
Row 3: 50, 62, 66, 75, 81, 85, 86, 89, 91, 95, 98, 99, 100, 102, 104, 109, 113, 116, 118, 119, 123, 136, 137, 140, 152, 157, 172, 176, 177, 192;
Row 4: 65, 74, 78, 101, 105, 106, 111, 115, 117, 120, 121, 122, 127, 141, 153, 160, 164, 168, 193;
Row 5: 94, 125, 129, 131, 143, 145, 149, 156, 161, 163, 167, 173, 197, 213;
Row 6: 90, 114, 134, 135, 138, 139, 147, 180, 181, 208, 212, 217, 228;
Row 7: 110, 142, 151, 154, 158, 169, 184, 189, 204, 224;
Row 8: 155, 159, 162, 165, 166, 182, 187, 196, 201, 202, 203, 216, 229, 233, 240, 252, 253;
Row 9: 126, 130, 146, 150, 171, 178, 179, 183, 185, 200, 209, 236, 237, 241, 288;
Row 10: 191, 205, 218, 232, 249, 257;
Row 11: 170, 175, 198, 207, 220, 221, 227, 245, 272, 277, 293;
Row 12: 186, 214, 225, 244, 248, 268, 297;
Row 13: 174, 199, 223, 256, 265, 292;
Row 14: 190, 194, 206, 215, 261, 269, 273, 281, 313, 317;
Row 15: 211, 219, 242, 262, 301;
Row 16: 195, 222, 239, 243, 276, 278, 289, 333;
Row 17: 226, 230, 238, 264, 266, 284;
Row 18: 210, 258, 263, 267, 285, 304, 308, 337;
Row 19: 231, 246, 254, 260, 357;
Row 20: 234, 247, 251, 282, 305, 309, 353;
Row 21: 235, 250, 280, 298, 321, 329;
Row 22: 332.
Denoting r(n) the index of the row of the number n, among n = {350, ..., 1000} the only r-values below 28 are a(357) = 19, a(353) = 20, a(373) = 25, a(397) = 26, a(362) = 27, and all n >= 400 have r(n) > 30. So the above rows appear to be complete, and rows 23 & 24 would be empty, as would be rows 39 & 40 unless they have elements > 1000. - _M. F. Hasler_, May 26 2020
		

Crossrefs

Programs

  • PARI
    {r(n,m=n)=sum(x=1,min(sqrtint(n),m),r(n-x^2,x-1),!n)} \\ Gives index of the row in which number n is listed. - M. F. Hasler, May 26 2020

A350196 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero pentagonal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 35, 92, 127, 144, 214, 237, 215, 249, 250, 319, 315, 354, 355, 366, 390, 391, 432, 431, 425, 475, 448, 478, 460, 482, 483, 510, 495, 537, 531, 525, 545, 570, 560, 594, 566, 581, 582, 606, 601, 595, 618, 603, 630, 602, 625, 652, 666, 657, 641
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Crossrefs

A350197 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero hexagonal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 66, 126, 186, 277, 305, 377, 325, 416, 371, 445, 451, 511, 496, 536, 557, 607, 575, 653, 602, 630, 641, 682, 675, 668, 701, 710, 742, 746, 760, 767, 755, 800, 761, 874, 794, 845, 806, 846, 821, 861, 881, 880, 887, 867, 905, 906, 886, 911, 900
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Crossrefs

A350198 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero heptagonal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 81, 189, 270, 343, 342, 456, 538, 557, 531, 651, 636, 676, 658, 723, 804, 784, 777, 770, 825, 844, 865, 890, 975, 960, 941, 966, 983, 959, 1030, 1040, 1012, 1080, 1053, 1039, 1119, 1046, 1078, 1079, 1064, 1072, 1173, 1071, 1180, 1152, 1193, 1194, 1226, 1220, 1247
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Crossrefs

A350199 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero octagonal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 105, 238, 302, 342, 406, 570, 622, 639, 686, 758, 750, 822, 815, 862, 883, 926, 983, 1027, 966, 995, 987, 1099, 1091, 1159, 1142, 1143, 1183, 1227, 1171, 1231, 1163, 1315, 1295, 1296, 1275, 1372, 1267, 1371, 1343, 1375, 1399, 1476, 1411, 1403, 1407, 1463, 1451, 1508, 1507
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Crossrefs

A350207 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

25, 65, 144, 305, 456, 622, 731, 1006, 1434, 1499, 1711, 1806, 2446, 2742, 3001, 3051, 3544, 3699, 3962, 4345, 5362, 5039, 5756, 5712, 6251, 6655, 7399, 7698, 7591, 8304, 8673, 9241, 9362, 9299, 10312, 10606, 11121, 10736, 12113, 12737, 12934
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Crossrefs

A097758 Greatest integer that can be written as a sum of distinct squares in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

128, 132, 188, 192, 193, 213, 228, 224, 253, 288, 257, 293, 297, 292, 317, 301, 333, 284, 337, 357, 353, 329, 332, 349, 336, 373, 397, 362, 393, 372, 377, 413, 368, 365, 388, 389, 417, 437, 433, 319, 343, 421, 405, 457, 453, 364, 408, 351, 432, 402, 473
Offset: 0

Views

Author

Ray Chandler, Sep 06 2004

Keywords

Comments

Trailing edge of table described in A097757; leading edge is A097563.

Crossrefs

Showing 1-10 of 16 results. Next