cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350405 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

37, 142, 285, 536, 911, 1268, 1909, 2713, 3876, 5179, 6891, 8901, 11190, 14384, 18087, 21697, 27055, 32166, 39111, 46560, 53892, 64412, 73949, 86778, 98202, 113635, 130088, 148051, 167505, 190968, 214955, 240143, 269775, 297615, 331201, 367429, 409179, 451340, 497830
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 29 2021

Keywords

Examples

			For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

Programs

  • Mathematica
    Do[i=1;While[b=PolygonalNumber[n,Range@i++];!IntegerQ[t=Min[First/@Select[Tally[Select[Total/@Subsets[b,{n}],#<=Max@b&]],Last@#==n&]]]];Print@t,{n,3,10}] (* Giorgos Kalogeropoulos, Dec 30 2021 *)

Formula

a(n) >= A006484(n). - David A. Corneth, Dec 30 2021

Extensions

a(10)-a(31) from Michael S. Branicky, Dec 29 2021
More terms from David A. Corneth, Dec 30 2021

A350288 a(n) is the smallest number which can be represented as the sum of n distinct nonzero triangular numbers in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 16, 37, 64, 83, 128, 177, 204, 270, 352, 430, 533, 632, 764, 893, 1102, 1256, 1443, 1630, 1855, 2141, 2384, 2699, 3053, 3378, 3753, 4176, 4620, 5068, 5570, 6107, 6654, 7253, 7904, 8526, 9241, 9975, 10699, 11533, 12401, 13301, 14189, 15179, 16233, 17286, 18412
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 23 2021

Keywords

Examples

			For n = 2: 16 = 1 + 15 = 6 + 10.
For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Dec 26 2021

A374287 a(n) is the smallest number which can be represented as the sum of n distinct nonzero squares in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 65, 62, 90, 103, 136, 200, 276, 376, 481, 625, 806, 975, 1183, 1415, 1688, 1989, 2325, 2698, 3110, 3563, 4059, 4600, 5188, 5825, 6513, 7254, 8050, 8903, 9815, 10788, 11824, 12925, 14093, 15330, 16638, 18019, 19475, 21008, 22620, 24313, 26089, 27950, 29898
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(2) = 65 = 1^2 + 8^2 = 4^2 + 7^2.
a(3) = 62 = 1^2 + 5^2 + 6^2 = 2^2 + 3^2 + 7^2.
		

Crossrefs

Extensions

a(12) and beyond from Michael S. Branicky, Jul 02 2024

A350270 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 1729, 5104, 4445, 4509, 4662, 5454, 6210, 9045, 11124, 14967, 17964, 22051, 26209, 32697, 39564, 46908, 56070, 66222, 78912, 92961, 105841, 123732, 143200, 162801, 188154, 212220, 241614, 271405, 307448, 344016, 383607, 428624, 475273, 529830, 586664, 645120
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2021

Keywords

Examples

			For n = 2: 1729 = 1^3 + 12^3 = 9^3 + 10^3.
For n = 3: 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Extensions

a(16)-a(27) from Michael S. Branicky, Dec 22 2021
More terms from Jinyuan Wang, Dec 30 2021

A360218 a(n) is the smallest positive integer which can be represented as the sum of n distinct nonzero square pyramidal numbers in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 5580, 2814, 1980, 1595, 1700, 2175, 2415, 2830, 3740, 4810, 5995, 7610, 9240, 11380, 13896, 16506, 19735, 23150, 27441, 32085, 36721, 42755, 49570, 56610, 65135, 73165, 83021, 93835, 105671, 118255, 132545, 147546, 163516, 182155, 201040, 222371, 244280, 267856
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2023

Keywords

Examples

			For n = 3: 2814 = 14 + 1015 + 1785 = 55 + 650 + 2109 = 140 + 204 + 2470.
		

Crossrefs

Extensions

a(18)-a(33) from Michael S. Branicky, Feb 04 2023
a(34) and beyond from Michael S. Branicky, Feb 18 2023

A360306 a(n) is the smallest positive integer which can be represented as the sum of n distinct nonzero fourth powers in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 635318657, 811538, 300834, 185299, 138595, 143651, 154292, 197748, 225733, 291269, 374790, 474071, 586056, 715192, 857513, 1057689, 1330554, 1602250, 1919146, 2329547, 2786843, 3246204, 3899260, 4642700, 5378141, 6377822, 7342638, 8527103, 9787839, 11241455, 12978656
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 02 2023

Keywords

Examples

			For n = 2: 635318657 = 59^4 + 158^4 = 133^4 + 134^4.
For n = 3: 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
For n = 4: 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
		

Crossrefs

Extensions

a(18)-a(19) from Michael S. Branicky, Feb 04 2023
More terms from Bert Dobbelaere, Feb 11 2023

A375335 a(n) is the smallest positive integer whose square can be represented as the sum of n distinct nonzero squares in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 1, 25, 23, 17
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2024

Keywords

Comments

a(6) = 16, a(10) = 25; a(5) > 500, a(7..9) > 100 if not -1 - Michael S. Branicky, Aug 13 2024

Examples

			a(2) = 25: 25^2 =  7^2 + 24^2
                = 15^2 + 20^2.
.
a(3) = 23: 23^2 = 3^2 +  6^2 + 22^2
                = 3^2 + 14^2 + 18^2
                = 6^2 + 13^2 + 18^2.
.
a(4) = 17: 17^2 = 2^2 + 4^2 + 10^2 + 13^2
                = 2^2 + 5^2 +  8^2 + 14^2
                = 2^2 + 8^2 + 10^2 + 11^2
                = 3^2 + 6^2 + 10^2 + 12^2.
		

Crossrefs

Showing 1-7 of 7 results.