cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097646 Numbers n such that n = phi(phi(n) + sigma(n)).

Original entry on oeis.org

1, 2, 6, 10, 20, 22, 46, 48, 58, 82, 106, 166, 178, 180, 208, 226, 262, 346, 358, 382, 466, 478, 502, 562, 586, 718, 838, 862, 864, 886, 982, 1018, 1120, 1186, 1282, 1306, 1318, 1366, 1368, 1438, 1486, 1522, 1618, 1822, 1906, 2026, 2038, 2062, 2098, 2206
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 08 2004

Keywords

Comments

If n=2*p where p is a Sophie Germain odd prime, then n is in the sequence; the proof is obvious.

Examples

			22 is in the sequence because phi(22)=10, sigma(22)=36 and phi(10+36)=22.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2300] | n eq EulerPhi(EulerPhi(n) + DivisorSigma(1,n))]; // Vincenzo Librandi, Aug 22 2015
  • Maple
    with(numtheory):K:=proc()local n,a,c;  c:=1; for n from 1 to 5000000 do;
    a:=phi(phi(n)+ sigma(n));if  a=n  then lprint(c,n); c:=c+1; fi;od; end:K(); # K. D. Bajpai, Jul 18 2013
  • Mathematica
    Do[If[n==EulerPhi[EulerPhi[n]+DivisorSigma[1, n]], Print[n]], {n, 2400}]
    Select[Range[2500],EulerPhi[EulerPhi[#]+DivisorSigma[1,#]]==#&] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    is(n)=sigma(n=factor(n))==eulerphi(eulerphi(n)) \\ Charles R Greathouse IV, Nov 27 2013