cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077084 Erroneous version of A097646.

Original entry on oeis.org

1, 2, 6, 10, 20, 22, 46, 48, 58, 82, 106, 166, 178, 180, 208, 226, 262, 346, 358, 382, 466, 478, 502, 864, 1120, 3552
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

A018784 Numbers n such that sigma(phi(n)) = n.

Original entry on oeis.org

1, 3, 15, 28, 255, 744, 2418, 20440, 65535, 548856, 2835756, 4059264, 4451832, 10890040, 13192608, 23001132, 54949482, 110771178, 220174080, 445701354, 4294967295, 16331433888, 18377794080, 94951936080, 204721968000, 386940247200, 601662398400, 1433565580920
Offset: 1

Views

Author

Keywords

Comments

The numbers 2^2^n-1 for n=0,1,...,5 are in the sequence because 2^2^n-1=(2^2^0+1)*(2^2^1+1)*(2^2^2+1)*...*(2^2^(n-1)+1); 2^2^k+1 for k=0,1,2,3 & 4 are primes (Fermat primes); sigma(2^k)=2^(k+1)-1 and phi is a multiplicative function. Hence if p is a known Fermat prime (p=2^2^n+1 for n=0,1,2,3 & 4) then p-2 is in the sequence, note that this is not true for unknown Fermat primes if they exist. - Farideh Firoozbakht, Aug 27 2004

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, EulerPhi[#]] == # &] (* Amiram Eldar, Dec 10 2020 *)
  • PARI
    is(n)=sigma(eulerphi(n))==n \\ Charles R Greathouse IV, Nov 27 2013

Formula

sigma(A001229), sorted.

Extensions

Wilson's search was complete only through a(19) = 50319360. Jud McCranie reports Jun 15 1998 that the terms through a(24) are certain.
a(26)-a(28) added. Verified sequence is complete through a(28) by Donovan Johnson, Jun 30 2012

A097645 Numbers k such that k = sigma(phi(k) + pi(k)).

Original entry on oeis.org

1, 6, 54, 78, 1296, 1482, 6480, 6552, 14040, 20160, 36936, 1273896
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 07 2004

Keywords

Comments

Does this sequence have any odd terms > 1? There is no other term up to 3*10^7.
a(13) > 10350781218. - J.W.L. (Jan) Eerland, Dec 25 2021

Examples

			1273896 is in the sequence because pi(1273896) = 98190, phi(1273896) = 391680, and sigma(98190+391680) = 1273896.
		

Crossrefs

Programs

  • Mathematica
    Do[If[n==DivisorSigma[1, EulerPhi[n]+PrimePi[n]], Print[n]], {n, 10000000}]
    n=1;Monitor[Parallelize[While[True,If[DivisorSigma[1,EulerPhi[n]+PrimePi[n]]==n,Print[n]];n++];n],n] (* J.W.L. (Jan) Eerland, Dec 25 2021 *)
  • PARI
    isok(k) = k == sigma(eulerphi(k) + primepi(k)); \\ Michel Marcus, Dec 25 2021

A097652 Numbers n such that n=phi(phi(n)+sigma(n)) and n is not of the form 2*p where p is a Sophie Germain odd prime.

Original entry on oeis.org

1, 2, 20, 48, 180, 208, 864, 1120, 1368, 3552, 58320, 76416, 79968, 95488, 107520, 338688, 570240, 595968, 653184, 1347840, 5199552, 7918848, 14592000, 93699072, 159138176, 167078784, 246688000, 281640960, 314548224, 323985408, 338411520, 347578368, 352002048
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 09 2004

Keywords

Comments

It is obvious that if n=2*p where p is a Sophie Germain odd prime then n=phi(phi(n)+sigma(n)). This sequence is a subsequence of A097646. Except for the first term all terms of this sequence are even. There is no other term up to 3*10^7.

Examples

			14592000 is in the sequence because 14592000=2*7296000, 7296000 is not a Sophie Germain odd prime and phi(phi(14592000)+sigma(14592000)) =14592000.
		

Crossrefs

Programs

  • Mathematica
    Do[If[(!PrimeQ[n/2]||!PrimeQ[n+1])&&n==EulerPhi[EulerPhi[n]+ DivisorSigma[1, n]], Print[n]], {n, 30000000}]

Extensions

a(24)-a(33) from Donovan Johnson, Jan 18 2012

A227623 Numbers n such that phi(n) + pi(n) is prime.

Original entry on oeis.org

2, 5, 6, 17, 18, 23, 24, 25, 31, 33, 36, 41, 47, 48, 51, 70, 75, 84, 87, 98, 106, 109, 111, 127, 130, 157, 160, 170, 180, 191, 192, 197, 211, 212, 217, 219, 220, 221, 233, 236, 241, 242, 244, 247, 248, 257, 258, 259, 260, 261, 278, 279, 286, 288, 290, 331, 333
Offset: 1

Views

Author

K. D. Bajpai, Jul 18 2013

Keywords

Examples

			phi(786) + pi(786) = 260 + 137 = 397 which is prime, so 786 is in the sequence.
		

Crossrefs

Cf. A097646.

Programs

  • Maple
    with(numtheory):K := proc(n) local a; a :=(phi(n)+ pi(n)); if  isprime(a)  then RETURN (n) fi: end: seq(K(n), n=1..1000); # K. D. Bajpai, Jul 18 2013
    with(numtheory):K:=proc()local n,a,c;  c:=1; for n from 1 to 10000 do; a:=(phi(n)+ pi(n));if  isprime(a)  then lprint(c,n); c:=c+1; fi;od; end: K(); # K. D. Bajpai, Jul 18 2013
  • Mathematica
    Select[Range[200], PrimeQ[EulerPhi[#] + PrimePi[#]] &] (* G. C. Greubel, Jul 04 2017 *)
Showing 1-5 of 5 results.