A077084 Erroneous version of A097646.
1, 2, 6, 10, 20, 22, 46, 48, 58, 82, 106, 166, 178, 180, 208, 226, 262, 346, 358, 382, 466, 478, 502, 864, 1120, 3552
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Select[Range[10^6], DivisorSigma[1, EulerPhi[#]] == # &] (* Amiram Eldar, Dec 10 2020 *)
is(n)=sigma(eulerphi(n))==n \\ Charles R Greathouse IV, Nov 27 2013
1273896 is in the sequence because pi(1273896) = 98190, phi(1273896) = 391680, and sigma(98190+391680) = 1273896.
Do[If[n==DivisorSigma[1, EulerPhi[n]+PrimePi[n]], Print[n]], {n, 10000000}] n=1;Monitor[Parallelize[While[True,If[DivisorSigma[1,EulerPhi[n]+PrimePi[n]]==n,Print[n]];n++];n],n] (* J.W.L. (Jan) Eerland, Dec 25 2021 *)
isok(k) = k == sigma(eulerphi(k) + primepi(k)); \\ Michel Marcus, Dec 25 2021
14592000 is in the sequence because 14592000=2*7296000, 7296000 is not a Sophie Germain odd prime and phi(phi(14592000)+sigma(14592000)) =14592000.
Do[If[(!PrimeQ[n/2]||!PrimeQ[n+1])&&n==EulerPhi[EulerPhi[n]+ DivisorSigma[1, n]], Print[n]], {n, 30000000}]
phi(786) + pi(786) = 260 + 137 = 397 which is prime, so 786 is in the sequence.
with(numtheory):K := proc(n) local a; a :=(phi(n)+ pi(n)); if isprime(a) then RETURN (n) fi: end: seq(K(n), n=1..1000); # K. D. Bajpai, Jul 18 2013 with(numtheory):K:=proc()local n,a,c; c:=1; for n from 1 to 10000 do; a:=(phi(n)+ pi(n));if isprime(a) then lprint(c,n); c:=c+1; fi;od; end: K(); # K. D. Bajpai, Jul 18 2013
Select[Range[200], PrimeQ[EulerPhi[#] + PrimePi[#]] &] (* G. C. Greubel, Jul 04 2017 *)
Comments