A097653
Numbers n such that n=d_1!!+d_2!!+...+d_k!! where d_1 d_2 ... d_k is the decimal expansion of n.
Original entry on oeis.org
107 is in the sequence because 1!!+0!!+7!!=1+1+7*5*3*1=107.
-
Do[h=IntegerDigits[n];l=Length[h];If[n==Sum[h[[k]]!!, {k, l}], Print[n]], {n, 4*9!!}]
A097654
Numbers n such that n=|d_1!!-d_2!!+...+(-1)^(k-1)*d_k!!| where d_1 d_2 ... d_k is the decimal expansion of n.
Original entry on oeis.org
380 is in the sequence because 380=|3!!-8!!+0!!|.
-
Do[h=IntegerDigits[n];l=Length[h];If[n==Abs[Sum[(-1)^(k-1) *h[[k]]!!, {k, l}]], Print[n]], {n, 4*9!!}]
A110071
Numbers n such that n = pi(d_1!!*d_2!!*...*d_k!!) where d_1 d_2 ... d_k is the decimal expansion of n.
Original entry on oeis.org
0, 4, 290, 11387, 1656281, 538311474096
Offset: 1
11387 is in the sequence because 11387 = pi(1!!*1!!*3!!*8!!*7!!).
-
Do[h = IntegerDigits[n]; l = Length[h]; If[n == PrimePi[ Product[h[[k]]!!, {k, l}]], Print[n]], {n, 0, 50000}]
A110072
Numbers k such that k = sigma(d_1!!*d_2!!*...*d_j!!) where d_1 d_2 ... d_j is the decimal expansion of k.
Original entry on oeis.org
1, 163800, 1547520, 81254720
Offset: 1
81254720 is a term because 81254720 = sigma(8!!*1!!*2!!*5!!*4!!*7!!*2!!*0!!).
-
Do[h = IntegerDigits[n]; l = Length[h]; If[n == DivisorSigma[1, Product[h[[k]]!!, {k, l}]], Print[n]], {n, 0, 100000000}]
A102279
Numbers n such that n = phi(d_1)!*phi(d_2)!* ... *phi(d_k)! where d_1 d_2 ... d_k is the decimal expansion of n and assume that phi(0)=0.
Original entry on oeis.org
1, 48, 720, 17280, 17915904000, 479219999055934390272000000000
Offset: 1
17280 is in the sequence because 17280 = phi(1)!*phi(7)!*phi(2)!*phi(8)!*phi(0)!.
A158988
Numbers n such that n=phi(d_1!!)*phi(d_2!!)*...*phi(d_k!!) where d_1...d_k is the decimal expansion of n.
Original entry on oeis.org
4, 16, 64, 128, 6912, 24576, 16384, 786432, 524288, 50096498540544, 3764488749034090683017723904, 167633515663893895281332936606596215078912
Offset: 1
Showing 1-6 of 6 results.
Comments