cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097701 Expansion of 1/((1-x)^2*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 2, 5, 9, 16, 25, 39, 56, 80, 109, 147, 192, 249, 315, 396, 489, 600, 726, 874, 1040, 1232, 1446, 1690, 1960, 2265, 2600, 2975, 3385, 3840, 4335, 4881, 5472, 6120, 6819, 7581, 8400, 9289, 10241, 11270, 12369, 13552, 14812, 16164, 17600, 19136
Offset: 0

Views

Author

Ralf Stephan, Aug 24 2004

Keywords

Comments

Number of partitions of 5*n+12 or 5*n+13 into 5 parts (+-) 3 mod 5. For example, the a(3) = 9 partitions of 27 are: [18,3,2,2,2], [13,8,2,2,2], [17,3,3,2,2], [12,7,3,3,2], [7,7,7,3,3], [13,7,3,2,2], [8,8,7,2,2], [12,8,3,2,2], [8,7,7,3,2]. - Richard Turk, Apr 23 2016
Number of partitions of n into two kinds of parts 1, two kinds of parts 2, and one kind of parts 3. - Joerg Arndt, Apr 24 2016

Examples

			G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 39*x^6 + ... - _Michael Somos_, Aug 16 2023
		

Crossrefs

First differences of A002625. Partial sums of A008763.

Programs

  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=1)}, unlabeled]: subs(r=5,stack): seq(count(subs(r=3,ZL),size=m),m=3..47) ; # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^2)^2(1-x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,-1,1,3,-1,-2,1},{1,2,5,9,16,25,39,56,80},50] (* Harvey P. Dale, May 20 2013 *)
    a[ n_] := Round[(n + 1)*(9*(-1)^n + n^3 + 17*n^2 + 95*n + 184)/288]; (* Michael Somos, Aug 16 2023*)
  • PARI
    a(n)=1/576*(2*n^4+36*n^3+224*n^2+558*n+495+(18*n+81)*(-1)^n-64*(if(n%3,1,0)))
    
  • PARI
    x='x+O('x^99); Vec(1/((1-x)^2*(1-x^2)^2*(1-x^3))) \\ Altug Alkan, Sep 18 2016

Formula

a(n) = floor((n + 1) * (9*(-1)^n + n^3 + 17*n^2 + 95*n + 184)/288 + 1/2). - Tani Akinari, Oct 07 2012
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9) for n >= 9, with initial values as shown. - Harvey P. Dale, May 20 2013
a(n) = (6*n*(9*((-1)^n + 31) + n*(n*(n + 18) + 112)) + 243*(-1)^n + 128*cos((2*Pi*n)/3) + 1357)/1728. - Ilya Gutkovskiy, Apr 23 2016
a(n) = 1 + 175*n/288 + 47*n^2/144 + n^3/16 + n^4/288 + (9/16 + n/8)*floor(n/2) + 2*floor(n/3)/9 + floor((n+1)/3)/9. - Vaclav Kotesovec, Apr 24 2016
a(n) = a(-9-n) for all n in Z. - Michael Somos, Aug 16 2023