cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097781 Chebyshev polynomials S(n,27) with Diophantine property.

Original entry on oeis.org

1, 27, 728, 19629, 529255, 14270256, 384767657, 10374456483, 279725557384, 7542215592885, 203360095450511, 5483180361570912, 147842509666964113, 3986264580646460139, 107481301167787459640, 2898008866949614950141
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

All positive integer solutions of Pell equation b(n)^2 - 725*a(n)^2 = +4 together with b(n)=A090248(n+1), n>=0. Note that D=725=29*5^2 is not squarefree.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 27's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,26}. - Milan Janjic, Jan 26 2015

Examples

			(x,y) = (27;1), (727;27), (19602;728), ... give the positive integer solutions to x^2 - 29*(5*y)^2 =+4.
		

Crossrefs

Programs

  • Magma
    I:=[1, 27, 728]; [n le 3 select I[n] else 27*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
  • Maple
    with (combinat):seq(fibonacci(2*n, 5)/5, n=1..16); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Join[{a=1,b=27},Table[c=27*b-a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *)
    CoefficientList[Series[1/(1 - 27 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 24 2012 *)
  • Sage
    [lucas_number1(n,27,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = S(n, 27) = U(n, 27/2) = S(2*n+1, sqrt(29))/sqrt(29) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 27*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=27; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (27+5*sqrt(29))/2 and am = (27-5*sqrt(29))/2.
G.f.: 1/(1-27*x+x^2).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*26^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/5*(5 + sqrt(29)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 5/54*(5 + sqrt(29)). - Peter Bala, Dec 23 2012