cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097835 First differences of Chebyshev polynomials S(n,27) = A097781(n) with Diophantine property.

Original entry on oeis.org

1, 26, 701, 18901, 509626, 13741001, 370497401, 9989688826, 269351100901, 7262490035501, 195817879857626, 5279820266120401, 142359329305393201, 3838422070979496026, 103495036587140999501, 2790527565781827490501
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(5*b(n))^2 - 29*a(n)^2 = -4 with b(n)=A097834(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 29*y^2 = -4 are (5=5*1,1), (140=5*28,26), (3775=5*755,701), (101785=5*20357,18901), ...
		

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,26];; for n in [3..30] do a[n]:=27*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-27*x+x^2) )); // G. C. Greubel, Jan 12 2019
    
  • Mathematica
    LinearRecurrence[{27,-1},{1,26},30] (* Harvey P. Dale, May 31 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-27*x+x^2)) \\ G. C. Greubel, Jan 12 2019
    
  • Sage
    ((1-x)/(1-27*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
    

Formula

a(n) = ((-1)^n)*S(2*n, 5*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1-27*x+x^2).
a(n) = S(n, 27) - S(n-1, 27) = T(2*n+1, sqrt(29)/2)/(sqrt(29)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 27*a(n-1) - a(n-2), a(0)=1, a(1)=26. - Philippe Deléham, Nov 18 2008

A052918 a(0) = 1, a(1) = 5, a(n+1) = 5*a(n) + a(n-1).

Original entry on oeis.org

1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, 2646275, 13741001, 71351280, 370497401, 1923838285, 9989688826, 51872282415, 269351100901, 1398627786920, 7262490035501, 37711077964425, 195817879857626
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A087130(n)^2 - 29*a(n-1)^2 = 4*(-1)^n, n >= 1. - Gary W. Adamson, Jul 01 2003, corrected Oct 07 2008, corrected by Jianing Song, Feb 01 2019
a(p-1) == 29^((p-1)/2) (mod p), for odd primes p. - Gary W. Adamson, Feb 22 2009 [See A087475 for more info about this congruence. - Jason Yuen, Apr 05 2025]
For more information about this type of recurrence, follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
Binomial transform of A015523. - Johannes W. Meijer, Aug 01 2010
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 5's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,5} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 5-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 5 kinds of squares available. (End)

Crossrefs

Row 5 of A073133, A172236, and A352361.
Cf. A087130, A099365 (squares), A100237, A175184 (Pisano periods), A201005 (prime subsequence).

Programs

  • GAP
    a:=[1,5];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
  • Magma
    I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 23 2013
    
  • Magma
    R:=PowerSeriesRing(Integers(), 22); Coefficients(R!( 1/(1 - 5*x - x^2) )); // Marius A. Burtea, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z,Prod(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
    with(combinat):a:=n->fibonacci(n,5):seq(a(n),n=1..30); # Zerinvary Lajos, Dec 07 2008
  • Mathematica
    LinearRecurrence[{5, 1}, {1, 5}, 30] (* Vincenzo Librandi, Feb 23 2013 *)
    Table[Fibonacci[n+1, 5], {n,0,30}] (* Vladimir Reshetnikov, May 08 2016 *)
  • PARI
    Vec(1/(1-5*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [lucas_number1(n,5,-1) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
    

Formula

G.f.: 1/(1 - 5*x - x^2).
a(3n) = A041047(5n), a(3n+1) = A041047(5n+3), a(3n+2) = 2*A041047(5n+4). - Henry Bottomley, May 10 2000
a(n) = Sum_{alpha=RootOf(-1+5*z+z^2)} (1/29)*(5+2*alpha)*alpha^(-1-n).
a(n-1) = (((5 + sqrt(29))/2)^n - ((5 - sqrt(29))/2)^n)/sqrt(29). - Gary W. Adamson, Jul 01 2003
a(n) = U(n, 5*i/2)*(-i)^n with i^2 = -1 and Chebyshev's U(n, x/2) = S(n, x) polynomials. See triangle A049310.
Let M = {{0, 1}, {1, 5}}, then a(n) is the lower-right term of M^n. - Roger L. Bagula, May 29 2005
a(n) = F(n, 5), the n-th Fibonacci polynomial evaluated at x = 5. - T. D. Noe, Jan 19 2006
a(n) = denominator of n-th convergent to [1, 4, 5, 5, 5, ...], for n > 0. Continued fraction [1, 4, 5, 5, 5, ...] = 0.807417596..., the inradius of a right triangle with legs 2 and 5. n-th convergent = A100237(n)/A052918(n), the first few being: 1/1, 4/5, 21/26, 109/135, 566/701, ... - Gary W. Adamson, Dec 21 2007
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 5*A097781(n), a(2n) = A097835(n).
Limit_{k->oo} a(n+k)/a(k) = (A087130(n) + a(n-1)*sqrt(29))/2.
Limit_{n->oo} A087130(n)/a(n-1) = sqrt(29). (End)
From L. Edson Jeffery, Jan 07 2012: (Start)
Define the 2 X 2 matrix A = {{1, 1}, {5, 4}}. Then:
a(n) is the upper-left term of (1/5)*(A^(n+2) - A^(n+1));
a(n) is the upper-right term of A^(n+1);
a(n) is the lower-left term of (1/5)*A^(n+1);
a(n) is the lower-right term of (Sum_{k=0..n} A^k). (End)
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(29) - 5)/2. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 5*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 5 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A090248 a(n) = 27a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 27.

Original entry on oeis.org

2, 27, 727, 19602, 528527, 14250627, 384238402, 10360186227, 279340789727, 7531841136402, 203080369893127, 5475638145978027, 147639149571513602, 3980781400284889227, 107333458658120495527, 2894022602368968490002, 78031276805304028734527
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004

Keywords

Comments

a(n+1)/a(n) converges to ((27+sqrt(725))/2) = 26.96291201...
Lim a(n)/a(n+1) as n approaches infinity = 0.03708798... = 2/(27+sqrt(725)) = (27-sqrt(725))/2.
Lim a(n+1)/a(n) as n approaches infinity = 26.96291201... = (27+sqrt(725))/2 = 2/(27-sqrt(725)).
Lim a(n)/a(n+1) = 27 - Lim a(n+1)/a(n).
A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 29*(5*b)^2 =+4 with companion sequence b(n)=A097781(n-1), n>=0.

Examples

			a(4) = 528527 = 27a(3) - a(2) = 27*19602 - 727 = ((27+sqrt(725))/2)^4 + ((27-sqrt(725))/2)^4 = 528526.999998107 + 0.000001892 = 528527.
(x;y) = (2;0), (27;1), (727;27), (19602;728), ... give the nonnegative integer solutions to x^2 - 29*(5*y)^2 = +4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 29*(5*A097781(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).
Cf. A090733 for 2*T(n, 25/2).
Cf. A087130.

Programs

  • Mathematica
    a[0] = 2; a[1] = 27; a[n_] := 27a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    RecurrenceTable[{a[0]==2,a[1]==27,a[n]==27a[n-1]-a[n-2]},a,{n,20}] (* or *) LinearRecurrence[{27,-1},{2,27},20] (* Harvey P. Dale, Jan 03 2018 *)
  • PARI
    {a(n) = (-1)^n * subst(2 * poltchebi(2*n), 'x, -5/2 * I)}; /* Michael Somos, Nov 04 2008 */
    
  • Python
    def aupton(idx):
      alst = [2, 27]
      for n in range(2, idx+1): alst.append(27*alst[-1] - alst[-2])
      return alst
    print(aupton(16)) # Michael S. Branicky, Feb 27 2021
  • Sage
    [lucas_number2(n,27,1) for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = 27a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 27. a(n) = ((27+sqrt(725))/2)^n + ((27-sqrt(725))/2)^n, (a(n))^2 = a(2n)+2.
a(n) = S(n, 27) - S(n-2, 27) = 2*T(n, 27/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (27+5*sqrt(29))/2 and am := (27-5*sqrt(29))/2.
G.f.: (2-27*x)/(1-27*x+x^2).
a(-n) = a(n). - Michael Somos, Nov 01 2008
A087130(2*n) = a(n). - Michael Somos, Nov 01 2008

Extensions

More terms from Robert G. Wilson v, Jan 30 2004
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A097834 Chebyshev polynomials S(n,27) + S(n-1,27) with Diophantine property.

Original entry on oeis.org

1, 28, 755, 20357, 548884, 14799511, 399037913, 10759224140, 290100013867, 7821941150269, 210902311043396, 5686540457021423, 153325690028535025, 4134107090313424252, 111467565748433919779, 3005490168117402409781
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(5*a(n))^2 - 29*b(n)^2 = -4 with b(n) = A097835(n) give all positive solutions of this Pell equation.
From Klaus Purath, Sep 24 2024: (Start)
a(n) = (t(i+2n+1) - t(i))/(t(i+n+1) - t(i+n)), where (t) is any sequence satisfying t(i) = 28t(i-1) - 28t(i-2) + t(i-3) or t(i) = 27t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+n+1) - t(i+n) != 0 for integer i and n >= 0.
a(n) = (Sum_{i .. i+2n} t(i))/t(i+n), where (t) is any recurrence of the form (27,-1) without regard to initial values and including this sequence itself, as long as t(i+n) != 0 for integer i and n >= 0.
a(n) = t(n) - t(n-1) = (t(n+1) - t(n-2))/28, where (t) is any third order recurrence with constant coefficients (28,-28,1) and initial values t(0) = x, t(1) = x + 1, t(2) = x + 29 for any integer x.
a(n) = t(n-1) + t(n) = (t(n-2) + t(n+1))/26, where (t) is any third order recurrence with constant coefficients (26,26,-1) and initial values t(0) = x, t(1) = 1 - x, t(2) = x + 27 for any integer x.
a(n) = (t(i+4n+2) - t(i))/(t(i+2n+2) - t(i+2n)), where (t) is any recurrence of the form (5,1) without regard to initial values, as long as t(i+2n+2) - t(i+2n) != 0 for nonnegative integer i and n. (End)

Examples

			All positive solutions of Pell equation x^2 - 29*y^2 = -4 are
(5=5*1,1), (140=5*28,26), (3775=5*755,701), (101785=5*20357,18901), ...
		

Crossrefs

A087130(2*n + 1) = 5 * a(n). - Michael Somos, Nov 01 2008

Programs

  • Mathematica
    a[n_] := -2/5*I*(-1)^n*ChebyshevT[2*n + 1, 5*I/2]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 21 2013, from 2nd formula *)
  • PARI
    {a(n) = (-1)^n * subst(2 * I / 5 * poltchebi(2*n + 1), 'x, -5/2 * I)}; /* Michael Somos, Nov 04 2008 */

Formula

a(n) = S(n, 27) + S(n-1, 27) = S(2*n, sqrt(29)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x). S(n, 27)=A097781(n).
a(n) = (-2/5)*i*((-1)^n)*T(2*n+1, 5*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-27*x+x^2).
a(n) = - a(-1-n) for all n in Z. - Michael Somos, Nov 01 2008
From Peter Bala, Aug 26 2022: (Start)
a(n) = (2/5)*(5/2 o 5/2 o ... o 5/2) (2*n+1 terms), where the binary operation o is defined on real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0.
The aerated sequence (b(n))n>=1 = [1, 0, 28, 0, 755, 0, 20357, 0, ...], with o.g.f. x*(1 + x^2)/(1 - 27*x^2 + x^4), is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -25, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = (1/2)*( (-1)^n - 1 )*F(n,5) + (1/5)*( 1 + (-1)^(n+1) )*F(n+1,5), where F(n,x) is the n-th Fibonacci polynomial - see A168561 (but with row indexing starting at n = 1).
Exp( Sum_{n >= 1} 10*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 10*A052918(n)*x^n.
Exp( Sum_{n >= 1} (-10)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 10*A052918(n)*(-x)^n.
(End)
a(n) = (a(n-1)*a(n-2) - 783)/a(n-3) for n >= 3. - Klaus Purath, Sep 24 2024

A090251 a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29.

Original entry on oeis.org

2, 29, 839, 24302, 703919, 20389349, 590587202, 17106639509, 495501958559, 14352450158702, 415725552643799, 12041688576511469, 348793243166188802, 10102962363242963789, 292637115290879761079, 8476373381072270107502
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004

Keywords

Comments

a(n+1)/a(n) converges to ((29+sqrt(837))/2) =28.9654761... Lim a(n)/a(n+1) as n approaches infinity = 0.0345238... =2/(29+sqrt(837)) =(29-sqrt(837))/2. Lim a(n+1)/a(n) as n approaches infinity = 28.9654761... = (29+sqrt(837))/2=2/(29-sqrt(837)). Lim a(n)/a(n+1) = 29 - Lim a(n+1)/a(n).
A Chebyshev T-sequence with a Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 93*(3*b)^2 =+4 with companion sequence b(n)=A097782(n+1), n>=0.

Examples

			a(4) =703919 = 29a(3) - a(2) = 29*24302 - 839= ((29+sqrt(837))/2)^4 + ((29-sqrt(837))/2)^4 = 703918.99999857 + 0.00000142 =703919.
(x,y) = (2;0), (29;1), (839;29), (24302,840), ..., give the
nonnegative integer solutions to x^2 - 93*(3*y)^2 =+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 93*(3*A097782(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).
Cf. A090248 for 2*T(n, 27/2).

Programs

  • Mathematica
    a[0] = 2; a[1] = 29; a[n_] := 29a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{29,-1},{2,29},30] (* Harvey P. Dale, May 28 2013 *)
  • Sage
    [lucas_number2(n,29,1) for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29. a(n) = ((29+sqrt(837))/2)^n + ((29-sqrt(837))/2)^n, (a(n))^2 =a(2n)+2.
a(n) = S(n, 29) - S(n-2, 29) = 2*T(n, 29/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (29+3*sqrt(93))/2 and am := (29-3*sqrt(93))/2.
G.f.: (2-29*x)/(1-29*x+x^2).

Extensions

More terms from Robert G. Wilson v, Jan 30 2004
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A097782 Chebyshev polynomials S(n,29) with Diophantine property.

Original entry on oeis.org

1, 29, 840, 24331, 704759, 20413680, 591291961, 17127053189, 496093250520, 14369577211891, 416221645894319, 12056058153723360, 349209464812083121, 10115018421396687149, 292986324755691844200, 8486488399493666794651
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

All positive integer solutions of Pell equation b(n)^2 - 837*a(n)^2 = +4 together with b(n)=A090251(n+1), n >= 0. Note that D=837=93*3^2 is not squarefree.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 29's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,28}. - Milan Janjic, Jan 26 2015

Examples

			(x,y) = (29;1), (839;29), (24302,840), ..., give the positive integer solutions to x^2 - 93*(3*y)^2 =+4.
		

Crossrefs

Cf. A097781.

Programs

  • GAP
    a:=[1,29];; for n in [3..20] do a[n]:=29*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
  • Magma
    I:=[1,29]; [n le 2 select I[n] else 29*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, May 25 2019
    
  • Mathematica
    LinearRecurrence[{29,-1},{1,29},20] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-29*x+x^2)) \\ G. C. Greubel, May 25 2019
    
  • Sage
    [lucas_number1(n,29,1) for n in range(1,20)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = S(n, 29) = U(n, 29/2) = S(2*n+1, sqrt(31))/sqrt(31) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 29*a(n-1) - a(n-2), n >= 1; a(0)=1, a(1)=29; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (29+3*sqrt(93))/2 and am = (29-3*sqrt(93))/2.
G.f.: 1/(1-29*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*28^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/9*(9 + sqrt(93)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 3/58*(9 + sqrt(93)). - Peter Bala, Dec 23 2012
Showing 1-6 of 6 results.