A097893 Partial sums of the central trinomial coefficients (A002426).
1, 2, 5, 12, 31, 82, 223, 616, 1723, 4862, 13815, 39468, 113257, 326198, 942425, 2730032, 7926659, 23061590, 67214399, 196211252, 573590621, 1678941350, 4920076877, 14433305000, 42381641381, 124558477682, 366371703833
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 14.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 25.
Programs
-
Haskell
a097893 n = a097893_list !! n a097893_list = scanl1 (+) a002426_list -- Reinhard Zumkeller, Jan 22 2013
-
Maple
ser:=series(1/(1-z)/sqrt(1-2*z-3*z^2),z=0,32): 1,seq(coeff(ser,z^n),n=1..31); a := n -> (n+1)*hypergeom([1/2,(1-n)/2,-n/2],[1,3/2],4): seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 29 2015
-
Mathematica
Table[ Sum[ Binomial[n, k]*Binomial[k, n-k], {k, 0, n}], {n, 0, 26}] // Accumulate (* Jean-François Alcover, Jul 10 2013 *) CoefficientList[Series[1/((1-x)*Sqrt[1-2*x-3*x^2]), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
-
PARI
a(n)=sum(i=0,n,sum(j=0,i,binomial(i,i-j)*binomial(j,i-j)))
-
PARI
vector(30, n, n--; sum(k=0, n\2, binomial(n+1, 2*k+1)* binomial(2*k, k))) \\ Altug Alkan, Oct 29 2015
-
PARI
x='x+O('x^30); Vec(1/((1-x)*sqrt(1-2*x-3*x^2))) \\ G. C. Greubel, Dec 21 2017
-
Python
from math import comb def A097893(n): return sum(comb(n+1,(k<<1)|1)*comb(k<<1,k) for k in range((n>>1)+1)) # Chai Wah Wu, Aug 14 2025
Formula
G.f.: 1/((1-z)*sqrt(1-2*z-3*z^2)).
a(n) = Sum_{0<=j<=i<=n} C(i, i-j)*C(j, i-j). - Benoit Cloitre, Oct 23 2004
a(n) = sum_{k=0..n} Sum_{j=0..n-k} C(k,j)C(n-k,j)C(2j,j). - Paul Barry, Jan 03 2008
Logarithm g.f. atan(x*M(x)), M(x) - o.g.f. for Motzkin numbers (A001006). - Vladimir Kruchinin_, Aug 11 2010
D-finite with recurrence -n*a(n) +(3*n-1)*a(n-1) +(n-2)*a(n-2) +3*(1-n)*a(n-3)=0. - R. J. Mathar, Nov 09 2012 [Since A002426(n) = a(n) - a(n-1), this third-order recurrence follows easily from the second-order recurrence given in A002426. - Peter Bala, Oct 28 2015]
G.f.: G(0)/(1-x), where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
a(n) ~ 3^(n+3/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 23 2013
a(n) = Sum_{k = 0..floor(n/2)} binomial(n + 1,2*k + 1) *binomial(2*k,k). Cf. A025178. - Peter Bala, Oct 28 2015
a(n) = (n+1)*hypergeom([1/2,(1-n)/2,-n/2],[1,3/2],4). - Peter Luschny, Oct 29 2015
a(n) = (n+1)*Sum_{k=0..floor(n/2)} multinomial(n;n-2*k,k,k)/(2*k+1). - Chai Wah Wu, Aug 14 2025
Comments