Original entry on oeis.org
1, 3, 8, 20, 51, 133, 356, 972, 2695, 7557, 21372, 60840, 174097, 500295, 1442720, 4172752, 12099411, 35161001, 102375400, 298586652, 872177273, 2551118623, 7471195500, 21904500500, 64286141881, 188844619563, 555216323396, 1633658183432, 4810340397375, 14173698242137
Offset: 0
-
a := series(exp(x)*(BesselI(0, 2*x) + 2*int(BesselI(0, 2*x), x) + int(int(BesselI(0, 2*x), x), x)), x = 0, 30): seq(n!*coeff(a, x, n), n = 0 .. 29);
-
a(n) = sum(k=0, n, sum(i=0, k, sum(j=0, i, binomial(i, i-j)*binomial(j, i-j)))); \\ Michel Marcus, Aug 06 2025
-
from math import comb as C
def a(n):
return sum(C(n+1, k+1)*C(2*(k//2), k//2) for k in range(n + 1))
print([a(n) for n in range(30)])
A002426
Central trinomial coefficients: largest coefficient of (1 + x + x^2)^n.
Original entry on oeis.org
1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, 212941, 616227, 1787607, 5196627, 15134931, 44152809, 128996853, 377379369, 1105350729, 3241135527, 9513228123, 27948336381, 82176836301, 241813226151, 712070156203, 2098240353907, 6186675630819
Offset: 0
For n = 2, (x^2 + x + 1)^2 = x^4 + 2*x^3 + 3*x^2 + 2*x + 1, so a(2) = 3. - _Michael B. Porter_, Sep 06 2016
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 78 and 163, #19.
- L. Euler, Exemplum Memorabile Inductionis Fallacis, Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
- P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 579.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 6.3.8.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 22.
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346. See p. 341.
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- George E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
- George E. Andrews, Euler's 'exemplum memorabile inductionis fallacis' and q-trinomial coefficients, J. Amer. Math. Soc. 3 (1990) 653-669.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- E. Barcucci, R. Pinzani and R. Sprugnoli, The Motzkin family, P.U.M.A. Ser. A, Vol. 2, 1991, No. 3-4, pp. 249-279.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
- Frank R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- N. M. Bogoliubov, Enumerative combinatorics of XX0 Heisenberg chain, Scientific Notes, POMI Workshops, Russian Academy of Sciences (St. Petersburg, Russia, 2019), Vol. 487.
- Jan Bok, Graph-indexed random walks on special classes of graphs, arXiv:1801.05498 [math.CO], 2018.
- Johann Cigler, Some nice Hankel determinants. arXiv preprint arXiv:1109.1449 [math.CO], 2011.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, J. Integer. Seq., Vol. 16 (2013), #13.1.3. - From _N. J. A. Sloane_, Feb 03 2013
- Steffen Eger, Stirling's Approximation for Central Extended Binomial Coefficients, American Mathematical Monthly, 121 (2014), 344-349.
- Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207 [math.CO], 2011.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.
- Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2=x^5-x and y^2=x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 14 2012
- Rigoberto Flórez, Leandro Junes and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
- R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission. See Problem 85:03.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990) 3-20, esp. 18-19.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
- Po-Yi Huang, Shu-Chung Liu, and Yeong-Nan Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- Cynthia Huffman, Analytical Observations (Translation of E326), Euleriana (2023) Vol. 3, Issue 1.
- Anders Hyllengren, Four integer sequences, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.
- Veronika Irvine, Stephen Melczer and Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
- L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43. [Annotated scanned copy]
- Nadav Kohen, Density and Symmetry in the Generalized Motzkin Numbers mod p, arXiv:2411.03681 [math.CO], 2024. See p. 2.
- Dmitry Kruchinin and Vladimir Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.
- Shara Lalo and Zagros Lalo, Formula for the Central terms in triangle A027907 ((1 + x + x^2)^n).
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Andrew Lohr, Several Topics in Experimental Mathematics, arXiv:1805.00076 [math.CO], 2018.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See pp. 28, 32.
- Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Thorsten Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- Paul Peart and Wen-Jin Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
- Ed. Pegg, Jr., Number of combinations of n coins when have 3 kinds of coin
- E. Pergola, R. Pinzani, S. Rinaldi and R. A. Sulanke, A bijective approach to the area of generalized Motzkin paths, Adv. Appl. Math., 28, 2002, 580-591.
- José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
- José L. Ramírez and Víctor F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
- Dan Romik, Some formulas for the central trinomial and Motzkin numbers, J. Integer Seqs., Vol. 6, 2003.
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
- Michelle Rudolph-Lilith and Lyle E. Muller, On an explicit representation of central (2k+1)-nomial coefficients, arXiv preprint arXiv:1403.5942 [math.CO], 2014.
- Michelle Rudolph-Lilith and Lyle E. Muller, On a link between Dirichlet kernels and central multinomial coefficients, Discrete Mathematics, Volume 338, Issue 9, Sep 06 2015, Pages 1567-1572.
- Jesus Salas and Alan D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009; J. Stat. Phys. 135 (2009) 279-373, arXiv:0711.1738 [cond-mat.stat-mech]. Mentions this sequence.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
- T. Sillke, Middle Trinomial Coefficient
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Robert A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
- Zhi-Wei Sun, Conjectures involving combinatorial sequences, arXiv preprint arXiv:1208.2683 [math.CO], 2012. - _N. J. A. Sloane_, Dec 25 2012
- Zhi-Wei Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. - _N. J. A. Sloane_, Dec 28 2012
- Zhi-Wei Sun, On central trinomial coefficients, Question 491563 at MathOverflow, April 23, 2025.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
- Dennis P. Walsh, The Probability of a Tie in a Three Candidate Election.
- Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
- Chenying Wang, Piotr Miska, and István Mező, The r-derangement numbers, Discrete Mathematics 340.7 (2017): 1681-1692.
- Chen Wang, Supercongruences and hypergeometric transformations, arXiv:2003.09888 [math.NT], 2020.
- Chen Wang and Zhi-Wei Sun, Congruences involving central trinomial coefficients, arXiv:1910.06850 [math.NT], 2019.
- Eric Weisstein's World of Mathematics, Central Trinomial Coefficient and Trinomial Coefficient.
- Doron Zeilberger, Analogs of the Richard Stanley Amer. Math. Monthly Problem 11610 for ALL pairs of words of length, 2, in an alphabet of, 3 letters. See Proposition 5.
- Doron Zeilberger, Analogs of the Richard Stanley Amer. Math. Monthly Problem 11610 for ALL pairs of words of length, 2, in an alphabet of, 3 letters. [Local copy]
- Index entries for sequences of k-nomial coefficients
- Index entries for "core" sequences
Cf.
A001006,
A002878,
A005043,
A005717,
A082758 (bisection),
A273055 (bisection),
A102445,
A113302,
A113303,
A113304,
A113305 (divisibility of central trinomial coefficients),
A152227,
A277640.
-
a002426 n = a027907 n n -- Reinhard Zumkeller, Jan 22 2013
-
P:=PolynomialRing(Integers()); [Max(Coefficients((1+x+x^2)^n)): n in [0..26]]; // Bruno Berselli, Jul 05 2011
-
A002426 := proc(n) local k;
sum(binomial(n, k)*binomial(n-k, k), k=0..floor(n/2));
end proc: # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
# Alternatively:
a := n -> simplify(GegenbauerC(n,-n,-1/2)):
seq(a(n), n=0..29); # Peter Luschny, May 07 2016
-
Table[ CoefficientList[ Series[(1 + x + x^2)^n, {x, 0, n}], x][[ -1]], {n, 0, 27}] (* Robert G. Wilson v *)
a=b=1; Join[{a,b}, Table[c=((2n-1)b + 3(n-1)a)/n; a=b; b=c; c, {n,2,100}]]; Table[Sqrt[-3]^n LegendreP[n,1/Sqrt[-3]],{n,0,26}] (* Wouter Meeussen, Feb 16 2013 *)
a[ n_] := If[ n < 0, 0, 3^n Hypergeometric2F1[ 1/2, -n, 1, 4/3]]; (* Michael Somos, Jul 08 2014 *)
Table[4^n *JacobiP[n,-n-1/2,-n-1/2,-1/2], {n,0,29}] (* Peter Luschny, May 13 2016 *)
a[n_] := a[n] = Sum[n!/((n - 2*i)!*(i!)^2), {i, 0, n/2}]; Table[a[n], {n, 0, 29}] (* Shara Lalo and Zagros Lalo, Oct 03 2018 *)
-
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
makelist(trinomial(n,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
-
makelist(ultraspherical(n,-n,-1/2),n,0,12); /* Emanuele Munarini, Dec 20 2016 */
-
{a(n) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, n))};
-
/* as lattice paths: same as in A092566 but use */
steps=[[2, 0], [0, 2], [1, 1]];
/* Joerg Arndt, Jul 01 2011 */
-
a(n)=polcoeff(sum(m=0, n, (2*m)!/m!^2 * x^(2*m) / (1-x+x*O(x^n))^(2*m+1)), n) \\ Paul D. Hanna, Sep 21 2013
-
from math import comb
def A002426(n): return sum(comb(n,k)*comb(k,n-k) for k in range(n+1)) # Chai Wah Wu, Nov 15 2022
-
A002426 = lambda n: hypergeometric([-n/2, (1-n)/2], [1], 4)
[simplify(A002426(n)) for n in (0..29)]
# Peter Luschny, Sep 17 2014
-
def A():
a, b, n = 1, 1, 1
yield a
while True:
yield b
n += 1
a, b = b, ((3 * (n - 1)) * a + (2 * n - 1) * b) // n
A002426 = A()
print([next(A002426) for in range(30)]) # _Peter Luschny, May 16 2016
A128014
Central binomial coefficients C(2n,n) repeated.
Original entry on oeis.org
1, 1, 2, 2, 6, 6, 20, 20, 70, 70, 252, 252, 924, 924, 3432, 3432, 12870, 12870, 48620, 48620, 184756, 184756, 705432, 705432, 2704156, 2704156, 10400600, 10400600, 40116600, 40116600, 155117520, 155117520, 601080390, 601080390
Offset: 0
-
a128014 = a000984 . flip div 2
-- Reinhard Zumkeller, Nov 14 2014
-
(1+x)/Sqrt[1-4x^2] + O[x]^34 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 07 2017 *)
With[{cb=Table[Binomial[2n,n],{n,0,20}]},Riffle[cb,cb]] (* Harvey P. Dale, Feb 17 2020 *)
A025178
First differences of the central trinomial coefficients A002426.
Original entry on oeis.org
0, 2, 4, 12, 32, 90, 252, 714, 2032, 5814, 16700, 48136, 139152, 403286, 1171380, 3409020, 9938304, 29017878, 84844044, 248382516, 727971360, 2135784798, 6272092596, 18435108258, 54228499920, 159636389850, 470256930052, 1386170197704
Offset: 1
-
a := n -> 2*(n-1)*hypergeom([1-n/2, 3/2-n/2], [2], 4):
seq(simplify(a(n)), n=1..28); # Peter Luschny, Oct 29 2015
-
Rest[Differences[CoefficientList[Series[x/Sqrt[1-2x-3x^2],{x,0,30}],x]]] (* Harvey P. Dale, Aug 22 2011 *)
Differences[Table[Hypergeometric2F1[(1-n)/2,1-n/2,1,4],{n,1,29}]] (* Peter Luschny, Nov 03 2015 *)
-
a(n) = sum(k=1, n\2, binomial(n-1,2*k-1)*binomial(2*k,k)); \\ Altug Alkan, Oct 29 2015
-
def a():
b, c, n = 0, 2, 2
yield b
while True:
yield c
b, c = c, ((2*n-1)*c+3*(n-1)*b)*n//((n+1)*(n-1))
n += 1
A025178 = a()
print([next(A025178) for in (1..20)]) # _Peter Luschny, Nov 04 2015
New name based on a comment by
T. D. Noe, Mar 16 2005, offset set to 1 and a(1) = 0 prepended by
Peter Luschny, Nov 04 2015
Original entry on oeis.org
1, 2, 9, 46, 253, 1452, 8570, 51594, 315225, 1948010, 12147881, 76316508, 482392198, 3064987460, 19560379470, 125309993974, 805458510441, 5192500350906, 33561539356277, 217429403317006, 1411572472199649, 9181398851046632, 59821825063376124, 390382132833183204
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 46*x^3 + 253*x^4 + 1452*x^5 +...
where A(x)^2 = 1 + 4*x + 22*x^2 + 128*x^3 + 771*x^4 + 4744*x^5 +...+ A199033(n)*x^n +...
Also, the g.f. A(x) satisfies: A(x) = G(x) * F(x*G(x)^2) where
F(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 +...+ A002426(n)*x^n +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...+ A001764(n)*x^n +...
-
A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[Sum[A002426[k]*Binomial[3*n - k + 1, n - k]*(2*k + 1)/(3*n - k + 1), {k, 0, n}], {n, 0, 50} ] (* G. C. Greubel, Mar 06 2017 *)
-
{a(n)=local(A2=sum(m=0, n, sum(k=0, m, binomial(m+k+1, m-k)*binomial(2*m-k+1, k))*x^m+x*O(x^n))); polcoeff(A2^(1/2), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G/sqrt(1-2*x*G^2-3*x^2*G^4), n)}
for(n=0, 30, print1(a(n), ", "))
-
{A002426(n)=sum(k=0, n\2, binomial(n, 2*k)*binomial(2*k, k))}
{a(n)=if(n==0, 1, sum(k=0, n, A002426(k)*binomial(3*n-k+1, n-k)*(2*k+1)/(3*n-k+1)))}
for(n=0, 30, print1(a(n), ", "))
-
{A097893(n)=sum(m=0, n, sum(k=0, m\2, binomial(m, 2*k)*binomial(2*k, k)))}
{a(n)=if(n==0, 1, sum(k=0, n, A097893(k)*binomial(3*n-k, n-k)*2*k/(3*n-k)))}
for(n=0, 30, print1(a(n), ", "))
Original entry on oeis.org
1, 2, 4, 9, 22, 57, 153, 420, 1170, 3293, 9339, 26642, 76363, 219728, 634312, 1836229, 5328346, 15494125, 45137995, 131712826, 384900937, 1126265986, 3299509114, 9676690939, 28407473191, 83470059532, 245465090758, 722406781935, 2127562036990, 6270020029353
Offset: 0
Cf.
A000069,
A001969,
A002144,
A002145,
A005773,
A005774,
A005775,
A010059,
A097893,
A122896,
A167630,
A210736,
A211278,
A257520.
-
gf := (1 + sqrt((1 + x) / (1 - 3*x))) / (2*(1 - x)):
a := n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n = 0 .. 29);
# Recurrence:
a:= proc(n) option remember; `if`(n<=2, 2^n, 3*a(n-1) - (6/n-1)*a(n-2) + (6/n-3)*a(n-3)) end:
seq(a(n), n = 0 .. 29);
-
Module[{a, n}, RecurrenceTable[{a[n] == 3*a[n-1] - (6-n)*a[n-2]/n + 3*(2-n)*a[n-3]/n, a[0] == 1, a[1] == 2, a[2] == 4}, a, {n, 0, 30}]] (* Paolo Xausa, May 05 2025 *)
-
from math import comb as C
def a(n):
return sum(C(n, k)*abs(sum((-1)**j*C(k, j) for j in range(k//2 + 1))) for k in range(n + 1))
print([a(n) for n in range(30)])
A338934
Square array T(i,j) = Sum_{k=0...min(i,j)} C(i,k)*C(j,k)*C(2*k,k) (i>=0,j>=0), read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 15, 7, 1, 1, 9, 31, 31, 9, 1, 1, 11, 53, 93, 53, 11, 1, 1, 13, 81, 213, 213, 81, 13, 1, 1, 15, 115, 411, 639, 411, 115, 15, 1, 1, 17, 155, 707, 1551, 1551, 707, 155, 17, 1, 1, 19, 201, 1121, 3239, 4653, 3239, 1121, 201, 19, 1
Offset: 0
There are T(1,1)*C(2,1)=6 ways to write the vector (1,1,1,1) as a sum of vectors containing two occurrences of the number 1 : (1,1,0,0)+(0,0,1,1), (0,0,1,1)+(1,1,0,0), (1,0,1,0)+(0,1,0,1), (0,1,0,1)+(1,0,1,0), (1,0,0,1)+(0,1,1,0), (0,1,1,0)+(1,0,0,1).
The square array T(i,j) (i >= 0, j >= 0) begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 5, 15, 31, 53, 81, ...
1, 7, 31, 93, 213, 411, ...
1, 9, 53, 213, 639, 1551, ...
1, 11, 81, 411, 1551, 4653, ...
...
Central diagonal terms give
A002893.
-
T[i_,j_]:=Sum[Binomial[i,k]Binomial[j,k]Binomial[2k,k],{k,0,Min[i,j]}]; Flatten[Table[T[i-j,j],{i,0,10},{j,0,i}]] (* Stefano Spezia, Nov 17 2020 *)
Showing 1-7 of 7 results.
Comments