cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A098010 Record lengths of transient part of aliquot sequences corresponding to entries in A098009.

Original entry on oeis.org

1, 2, 3, 4, 7, 15, 18, 178
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2004

Keywords

Examples

			138 has a transient of length 177 (see Guy's book).
		

Crossrefs

See A098009 for discussion, see A098008 for references.

Programs

  • Mathematica
    g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; a = -1; Do[b = Length[ f[n]] - 2; If[b > a, a = b; Print[b]], {n, 275}] (* Robert G. Wilson v, Sep 10 2004 *)

Extensions

18 and 178 from Robert G. Wilson v, Sep 10 2004

A098007 Length of aliquot sequence for n, or -1 if aliquot sequence never cycles.

Original entry on oeis.org

2, 3, 3, 4, 3, 1, 3, 4, 5, 5, 3, 8, 3, 6, 6, 7, 3, 5, 3, 8, 4, 7, 3, 6, 2, 8, 4, 1, 3, 16, 3, 4, 7, 9, 4, 5, 3, 8, 4, 5, 3, 15, 3, 6, 8, 9, 3, 7, 5, 4, 5, 10, 3, 14, 4, 6, 4, 5, 3, 12, 3, 10, 4, 5, 4, 13, 3, 6, 5, 7, 3, 10, 3, 6, 6, 6, 4, 12, 3, 8, 6, 7, 3, 7, 4, 10, 8, 8, 3, 11, 5, 7, 5, 5, 3, 10, 3, 4, 5, 6
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2004

Keywords

Comments

The aliquot sequence for n is the trajectory of n under repeated application of the map x -> sigma(x) - x (= A001065).
The trajectory will either have a transient part followed by a cyclic part, or will have an infinite transient part and never cycle. It seems possible that this be the case for 276, i.e., a(276) = -1.
Sequence gives number of distinct terms in the trajectory = (length of transient part of trajectory) + (length of cycle (which is 1 if the trajectory reached 0)), or -1 if the sequence never cycles.
Concerning one of the previously unsolved cases, Robert G. Wilson v reports that 840 reaches 0 after 749 iterations. - Sep 10 2004
Up to 1000 there are 12 numbers whose fate is currently unknown, namely five well-known hard cases: 276, 552, 564, 660, 966 and seven others: 306, 396 and 696, all on same trajectory as 276; 780, on same trajectory as 564; 828, on same trajectory as 660; 888, on same trajectory as 552; 996, on same trajectory as 660. - T. D. Noe, Jun 06 2006
The sum-of-divisors function sigma (A000203) and thus aliquot parts A001065 are defined only on the positive integers, so the trajectory ends when 0 is reached. Some authors define A001065 to be the sum of the positive numbers less than n that divide n, in which case one would have A001065(0) = 0. - M. F. Hasler, Nov 16 2013

Examples

			Examples of trajectories:
  1, 0.
  2, 1, 0.
  3, 1, 0. (and similarly for any prime)
  4, 3, 1, 0.
  5, 1, 0.
  6, 6, 6, ... (and similarly for any perfect number)
  8, 7, 1, 0.
  9, 4, 3, 1, 0.
  12, 16, 15, 9, 4, 3, 1, 0.
  14, 10, 8, 7, 1, 0.
  25, 6, 6, 6, ...
  28, 28, 28, ... (the next perfect number)
  30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0.
  42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0.
		

References

  • K. Chum, R. K. Guy, M. J. Jacobson, Jr., and A. S. Mosunov, Numerical and statistical analysis of aliquot sequences. Exper. Math. 29 (2020), no. 4, 414-425; arXiv:2110.14136, Oct. 2021 [math.NT].
  • J.-P. Delahaye, Les inattendus mathématiques, Chapter 19, "Nombres amiables et suites aliquotes", pp. 217-229, Belin-Pour la Science, Paris 2004.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • R. K. Guy, Unsolved Problems in Number Theory, B6.
  • R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
  • Carl Pomerance, The aliquot constant, after Bosma and Kane, Q. J. Math. 69 (2018), no. 3, 915-930.

Crossrefs

Cf. A001065.
There are many related sequences:
Length of transient part + length of cycle: this sequence. Other versions of the current sequence: A044050, A003023.
Length of transient part: A098008, also A007906. Records for transients: A098009, A098010.
Numbers which eventually reach 1 (or equivalently 0): A080907.
Aliquot trajectories for certain interesting starting values: A008885 (for 30), A008886 A008887 A008888 A008889 A008890 A008891 A008892 (for 276), A014360 A014361 A074907 A014362 A045477 A014363 A014364 A014365 A074906, A171103.
For n < 220, A098008 = A098007 - 1, i.e., 220 is the first sociable number. - Robert G. Wilson v, Sep 10 2004

Programs

  • Maple
    f:=proc(n) local t1, i,j,k; t1:=[n]; for i from 2 to 50 do j:= t1[i-1]; k:=sigma(j)-j; t1:=[op(t1), k]; od: t1; end; # produces trajectory for n
    # 2nd implementation:
    A098007 := proc(n)
        local trac, x;
        x := n ;
        trac := [x] ;
        while true do
            x := numtheory[sigma](x)-trac[-1] ;
            if x = 0 then
                return 1+nops(trac) ;
            elif x in trac then
                return nops(trac) ;
            end if;
            trac := [op(trac), x] ;
        end do:
    end proc:
    seq(A098007(n), n=1..100) ; # R. J. Mathar, Oct 08 2017
  • Mathematica
    g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; Table[ Length[ f[n]] - 1, {n, 100}] (* Robert G. Wilson v, Sep 10 2004 *)
  • PARI
    apply( {A098007(n, t=0)=until(bittest(t,if(n,n=sigma(n)-n)),t+=1<M. F. Hasler, Feb 24 2018, improved Aug 14 2022 thanks to a remark from Jianing Song
    
  • Python
    from sympy import divisor_sigma as sigma
    def a(n, limit=float('inf')):
        alst = []; seen = set(); i = n; c = 0
        while i and i not in seen and c < limit:
            alst.append(i); seen.add(i); i = sigma(i) - i; c += 1
        return "NA" if c == limit else len(set(alst + [i]))
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 11 2021
  • Scheme
    (define (A098007 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) (+ 1 i)) ((member next visited) i) (else (loop (cons next visited) (+ 1 i)))))))
    (define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
    ;; Antti Karttunen, Nov 01 2017
    

Extensions

More terms from Robert G. Wilson v and John W. Layman, Sep 10 2004

A115350 Termination of the aliquot sequence starting at n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 3, 7, 11, 3, 13, 7, 3, 3, 17, 11, 19, 7, 11, 7, 23, 17, 6, 3, 13, 28, 29, 3, 31, 31, 3, 7, 13, 17, 37, 7, 17, 43, 41, 3, 43, 43, 3, 3, 47, 41, 7, 43, 11, 3, 53, 3, 17, 41, 23, 31, 59, 43, 61, 7, 41, 41, 19, 3, 67, 31, 13, 43, 71, 3, 73, 43, 7, 41, 19, 3, 79, 41, 43, 43
Offset: 1

Views

Author

Sergio Pimentel, Mar 07 2006

Keywords

Comments

Catalan's conjecture [not yet established and probably false] is that every aliquot sequence terminates in a prime number followed by 1, a perfect number, a friendly pair or an aliquot cycle.
a(n) = the prime number if the sequence terminates in a prime followed by 1, a(n) = a perfect number if the sequence terminates in a perfect number, a(n) = the smallest number of the cycle if the sequence terminates in an aliquot cycle, a(n) = 0 if the sequence is open ended. So far 276 is the smallest number for which the termination of the aliquot sequence is not known.

Examples

			a(12)=3 since the aliquot sequence starting at 12 is: 12 - 16 - 15 - 9 - 4 - 3.
a(95)=6 since the aliquot sequence starting at 95 is: 95 - 25 - 6 - 6 ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, n] /. {k__, 1, 0, 0} :> {k} // Last];
    Array[a, 100] (* Jean-François Alcover, Mar 28 2020 *)

Extensions

Edited by N. J. A. Sloane, Aug 14 2006
a(61)-a(80) from R. J. Mathar's list by Robert Price, Mar 16 2019

A115060 Maximum peak of aliquot sequence starting at n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13, 14, 15, 16, 17, 21, 19, 22, 21, 22, 23, 55, 25, 26, 27, 28, 29, 259, 31, 32, 33, 34, 35, 55, 37, 38, 39, 50, 41, 259, 43, 50, 45, 46, 47, 76, 49, 50, 51, 52, 53, 259, 55, 64, 57, 58, 59, 172, 61, 62, 63, 64, 65, 259
Offset: 1

Views

Author

Sergio Pimentel, Mar 06 2006

Keywords

Comments

According to Catalan's conjecture all aliquot sequences end in a prime followed by 1, a perfect number, a friendly pair or an aliquot cycle. Some sequences seem to be open ended and keep growing forever i.e. 276. Most sequences only go down (i.e. 10 - 8 - 7 - 1), so for most cases in this sequence, a(n) = n. The first number to achieve a significantly high peak is 138

Examples

			a(24)=55 because the aliquot sequence starting at 24 is: 24 - 36 - 55 - 17 - 1 so the maximum peak of this sequence is 55.
		

Crossrefs

Programs

  • Python
    from sympy import divisor_sigma as sigma
    def aliquot(n):
        alst = []; seen = set(); i = n
        while i and i not in seen: alst.append(i); seen.add(i); i = sigma(i) - i
        return alst
    def aupton(terms): return [max(aliquot(n)) for n in range(1, terms+1)]
    print(aupton(66)) # Michael S. Branicky, Jul 11 2021

Extensions

More terms from Jinyuan Wang, Jul 11 2021

A290141 Numbers n that have a record maximum (> n) in their aliquot sequence.

Original entry on oeis.org

12, 18, 20, 24, 30, 102, 120, 138
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2017

Keywords

Comments

Maximum term in the aliquot sequence of n is considered only if it is larger than n.
The record values are in A290142.

Examples

			The aliquot sequence of 30 is: 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1. The maximum is 259 which is larger than 30, and larger than the maxima of all the aliquot sequences of the numbers below 30.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; seq = {}; a = -1; seq = {}; Do[b = Max[Drop[f[n], 1]];  If[b > a, a = b; AppendTo[seq, n]], {n, 2, 275}]; seq (* after Robert G. Wilson v at A098009 *)

A290142 Records of the maxima of the aliquot sequences of the numbers in A290141.

Original entry on oeis.org

16, 21, 22, 55, 259, 759, 32571, 179931895322
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2017

Keywords

Comments

a(8) was calculated by D. H. Lehmer.

Examples

			The aliquot sequence of 30 is: 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1. The maximum is 259 which is larger than 30, and larger than the maxima of all the aliquot sequences of the numbers below 30.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; rec = {}; a = -1; seq = {}; Do[b = Max[Drop[f[n], 1]];
    If[b > a, a = b; AppendTo[rec, b]], {n, 2, 275}] ; rec (* after Robert G. Wilson v at A098009 *)

A290143 Numbers n such that transient part of the unitary aliquot sequence for n sets a new record.

Original entry on oeis.org

1, 2, 10, 14, 22, 38, 70, 134, 138, 170, 190, 210, 318, 426, 1398, 4170, 6870, 8454, 19866, 22470, 36282, 38370, 70770, 84774, 98790, 132990, 474642, 705990, 961650
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2017

Keywords

Comments

The unitary version of A098009.
The record values are in A290144.

Examples

			The unitary aliquot sequence of 134 is: 134, 70, 74, 40, 14, 10, 8, 1. Its length is 8 and it is longer than the unitary aliquot sequences of all the numbers below 134.
		

References

  • Richard K. Guy, "Unitary aliquot sequences", Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. B8, pp. 97-99.
  • Richard K. Guy and Marvin C. Wunderlich, Computing Unitary Aliquot Sequences: A Preliminary Report, University of Calgary, Department of Mathematics and Statistics, 1979.
  • H. J. J. te Riele, Unitary Aliquot Sequences, MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
  • H. J. J. te Riele, Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    g[n_] := If[n > 0, usigma[n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; a = -1; seq = {}; Do[b = Length[f[n]] - 1; If[b > a, a = b; AppendTo[seq, n]], {n, 10^6}] ; seq (* after Giovanni Resta at A034448 & Robert G. Wilson v at A098009 *)

A290144 Record lengths of transient part of the unitary aliquot sequences of the numbers in A290143.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 43, 45, 67, 78, 205, 207, 1109, 1116, 1117, 1155, 1162, 1163, 1171, 1711, 1712, 1828, 1829
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2017

Keywords

Examples

			The unitary aliquot sequence of 134 is: 134, 70, 74, 40, 14, 10, 8, 1. Its length is 8 and it is longer than the unitary aliquot sequences of all the numbers below 134.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    g[n_] := If[n > 0, usigma[n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; a = 0; seq = {}; Do[b = Length[f[n]] - 2; If[b > a, a = b; AppendTo[seq, b]], {n, 10^6}]; seq (* after Giovanni Resta at A034448 & Robert G. Wilson v at A098009 *)

A290145 Numbers n that have a record maximum in their unitary aliquot sequence.

Original entry on oeis.org

30, 66, 102, 138, 174, 210, 318, 1110, 1398, 6870, 19866, 89610, 291450, 705990
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2017

Keywords

Comments

Maximum term in the aliquot sequence of n is considered only if it is larger than n.
The record values are in A290146.
te Riele found the unitary aliquot sequences of all numbers < 10^5, except for 89610. He terminated the calculation of the unitary aliquot sequence of 89610 at the 541st iteration, at 114601234388928504726, while the maximum, 645856907610421353834, is reached at the 569th iteration.

Examples

			The unitary aliquot sequence of 174 is: 174, 186, 198, 162, 84, 76, 24, 12, 8, 1. Its maximum is 198 which larger than the maxima of all the aliquot sequences of the numbers below 174.
		

References

  • H. J. J. te Riele, Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    g[n_] := If[n > 0, usigma[n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; a = -1; rec = {}; Do[b = Length[f[n]] - 2;
    If[b > a, a = b; AppendTo[rec, n]], {n, 10^6}] ; rec (* after Giovanni Resta at A034448 & Robert G. Wilson v at A098009 *)

A290146 Records of the maxima of the unitary aliquot sequences of the numbers in A290145.

Original entry on oeis.org

54, 90, 126, 162, 198, 378, 4950, 12978, 82278, 94218606, 8855754260391450, 645856907610421353834, 1350253136232108126126, 27709820863862780667438
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2017

Keywords

Examples

			The unitary aliquot sequence of 174 is: 174, 186, 198, 162, 84, 76, 24, 12, 8, 1. Its maximum is 198 which larger than the maxima of all the aliquot sequences of the numbers below 174.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    g[n_] := If[n > 0, usigma[n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; a = -1; rec = {}; Do[b = Length[f[n]] - 2; If[b > a, a = b; AppendTo[rec, b ]], {n, 10^6}] ; rec (* after Giovanni Resta at A034448 & Robert G. Wilson v at A098009 *)
Showing 1-10 of 11 results. Next