A008892
Aliquot sequence starting at 276.
Original entry on oeis.org
276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964, 10164, 19628, 19684, 22876, 26404, 30044, 33796, 38780, 54628, 54684, 111300, 263676, 465668, 465724, 465780, 1026060, 2325540, 5335260, 11738916, 23117724, 45956820, 121129260, 266485716
Offset: 0
- K. Chum, R. K. Guy, M. J. Jacobson, Jr., and A. S. Mosunov, Numerical and statistical analysis of aliquot sequences. Exper. Math. 29 (2020), no. 4, 414-425; arXiv:2110.14136, Oct. 2021 [math.NT].
- Richard K. Guy, Unsolved Problems in Number Theory, B6.
- Richard K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
- Tyler Busby, Table of n, a(n) for n = 0..2157 (terms 0..2127 from Daniel Suteu, terms 2128..2140 from Jeppe Stig Nielsen)
- Christophe Clavier, Aliquot Sequences
- Christophe Clavier, Trajectory of 276 - the first 1576 terms and their factorizations
- Christophe Clavier, Trajectory of 276 - the first 1576 terms and their factorizations [Cached copy]
- Wolfgang Creyaufmüller, Lehmer Five
- Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
- Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
- FactorDB (factordb.com), Search result for last 20 terms of 276 sequence.
- Brady Haran and Ben Sparks, An amazing thing about 276, Numberphile YouTube video, 2024.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 13.
- Paul Zimmermann, Recent information
- Index entries for sequences related to aliquot parts.
Cf.
A008885 (aliquot sequence starting at 30), ...,
A008891 (starting at 180).
-
f := proc(n) option remember; if n = 0 then 276; else sigma(f(n-1))-f(n-1); fi; end:
-
NestList[DivisorSigma[1, #] - # &, 276, 50] (* Alonso del Arte, Feb 24 2018 *)
-
a(n, a=276)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018
A098008
Length of transient part of aliquot sequence for n, or -1 if transient part is infinite.
Original entry on oeis.org
1, 2, 2, 3, 2, 0, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, 1, 7, 3, 0, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4, 3, 4, 9, 2, 13, 3, 5, 3, 4, 2, 11, 2, 9, 3, 4, 3, 12, 2, 5, 4, 6, 2, 9, 2, 5, 5, 5, 3, 11, 2, 7, 5, 6, 2, 6, 3, 9, 7, 7, 2, 10, 4, 6, 4, 4, 2, 9, 2, 3, 4, 5, 2, 18
Offset: 1
From _Antti Karttunen_, Nov 02 2017: (Start)
For n = 3, a(n) = 2, because A001065(3) = 1 and A001065(1) = 0, so it took two steps to end in zero.
For n = 25, a(n) = 1, because A001065(25) = 6, and A001065(6) = 6, so it took one step to enter into a cycle.
For n = 12496, a(n) = 0, because 12496 is a member of 5-cycle of map n -> A001065(n) (see A072891).
(End)
- R. K. Guy, Unsolved Problems in Number Theory, B6.
- R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
Cf.
A206708 (gives a proper subset of zeros).
-
g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; Table[ Length[ f[n]] - 2, {n, 102}] (* good only for n<220 *) (* Robert G. Wilson v, Sep 10 2004 *)
-
(define (A098008 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) => (lambda (transientplus1) (- (length transientplus1) 1))) (else (loop (cons next visited) (+ 1 i))))))) ;; Good for at least n = 1..275.
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 02 2017
A115350
Termination of the aliquot sequence starting at n.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 7, 7, 3, 7, 11, 3, 13, 7, 3, 3, 17, 11, 19, 7, 11, 7, 23, 17, 6, 3, 13, 28, 29, 3, 31, 31, 3, 7, 13, 17, 37, 7, 17, 43, 41, 3, 43, 43, 3, 3, 47, 41, 7, 43, 11, 3, 53, 3, 17, 41, 23, 31, 59, 43, 61, 7, 41, 41, 19, 3, 67, 31, 13, 43, 71, 3, 73, 43, 7, 41, 19, 3, 79, 41, 43, 43
Offset: 1
a(12)=3 since the aliquot sequence starting at 12 is: 12 - 16 - 15 - 9 - 4 - 3.
a(95)=6 since the aliquot sequence starting at 95 is: 95 - 25 - 6 - 6 ...
-
a[n_] := If[n == 1, 1, FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, n] /. {k__, 1, 0, 0} :> {k} // Last];
Array[a, 100] (* Jean-François Alcover, Mar 28 2020 *)
A098009
Numbers k such that the transient part of the aliquot sequence for k is finite and sets a new record.
Original entry on oeis.org
1, 2, 4, 9, 12, 30, 102, 138
Offset: 1
138 has a transient of length 177 (see Guy's book).
-
g[n_] := If[n > 0, DivisorSigma[1, n] - n, 0]; f[n_] := NestWhileList[g, n, UnsameQ, All]; a = -1; Do[b = Length[ f[n]] - 1; If[b > a, a = b; Print[n]], {n, 275}] (* Robert G. Wilson v, Sep 10 2004 *)
A127661
Lengths of the infinitary aliquot sequences.
Original entry on oeis.org
2, 3, 3, 3, 3, 1, 3, 4, 3, 5, 3, 5, 3, 6, 4, 3, 3, 6, 3, 6, 4, 7, 3, 8, 3, 4, 4, 6, 3, 6, 3, 4, 5, 7, 4, 7, 3, 8, 4, 8, 3, 5, 3, 4, 5, 5, 3, 7, 3, 7, 5, 7, 3, 4, 4, 6, 4, 5, 3, 1, 3, 8, 4, 5, 4, 3, 3, 8, 5, 10, 3, 3, 3, 9, 4, 9, 4, 2, 3, 8, 3, 5, 3, 10, 4, 6, 6, 8, 3, 1, 5, 7, 5, 8, 4, 9, 3, 8, 5, 7
Offset: 1
a(4)=3 because the infinitary aliquot sequence generated by 4 is 4 -> 1 -> 0 and it has length 3.
a(6) = 1 because 6 -> 6 -> 6 ->... enters a cycle after 1 term.
a(8) = 4 because 8 -> 7 -> 1 -> 0 terminates after 4 terms.
a(30) = 6 because 30 ->42 -> 54 -> 66 -> 78 -> 90 -> 90 -> 90 -> ...enters a cycle after 6 terms.
a(126)=2 because 126 -> 114 -> 126 enters a cycle after 2 terms.
- R. J. Mathar, Table of n, a(n) for n = 1..839
- Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
- Hans Havermann, Graphs of infinitary aliquot sequences for 840, 1152, 2442, 2658, 2982, 5766, 6216, 6870, 7560, 8670, 9030, 9570 (click to see full plots)
- D. Moews, A database of aliquot cycles (2015)
- J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
-
# Uses code snippets of A049417
A127661 := proc(n)
local trac,x;
x := n ;
trac := [x] ;
while true do
x := A049417(x)-trac[-1] ;
if x = 0 then
return 1+nops(trac) ;
elif x in trac then
return nops(trac) ;
end if;
trac := [op(trac),x] ;
end do:
end proc:
seq(A127661(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
-
ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ]; properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[iTrajectory[ # ]] &/@ Range[100]
(* Second program: *)
A049417[n_] := If[n == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
A127661[n_] := Module[{trac, x}, x = n; trac = {x}; While[True, x = A049417[x] - trac[[-1]]; If[x == 0, Return[1 + Length[trac]], If[MemberQ[trac, x], Return[Length[trac]]]]; trac = Append[trac, x]]];
Table[A127661[n], {n, 1, 100}] (* Jean-François Alcover, Aug 28 2023, after R. J. Mathar *)
A003023
"Length" of aliquot sequence for n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 6, 1, 4, 4, 5, 1, 3, 1, 6, 2, 5, 1, 4, 2, 6, 2, 1, 1, 14, 1, 2, 5, 7, 2, 3, 1, 6, 2, 3, 1, 13, 1, 4, 6, 7, 1, 5, 3, 2, 3, 8, 1, 12, 2, 4, 2, 3, 1, 10, 1, 8, 2, 3, 2, 11, 1, 4, 3, 5, 1, 8, 1, 4, 4, 4, 2, 10, 1, 6, 4, 5, 1, 5, 2, 8, 6, 6, 1, 9, 3, 5, 3, 3, 3, 8, 1, 2, 3, 4, 1, 17
Offset: 1
Examples of trajectories:
1, 0, 0, ...
2, 1, 0, 0, ...
3, 1, 0, 0, ... (and similarly for any prime)
4, 3, 1, 0, 0, ...
5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 6, 6, ... (and similarly for any perfect number)
8, 7, 1, 0, 0, ...
9, 4, 3, 1, 0, 0, ...
12, 16, 15, 9, 4, 3, 1, 0, 0, ...
14, 10, 8, 7, 1, 0, 0, ...
25, 6, 6, 6, ...
28, 28, 28, ... (the next perfect number)
30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0, 0, ...
42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0, 0, ...
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- R. K. Guy, Unsolved Problems in Number Theory, B6.
- R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Antti Karttunen, Table of n, a(n) for n = 1..275 (fate of 276 is unknown)
- R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971. [Annotated scanned copy]
- F. Richman, Aliquot series: Abundant, deficient, perfect
- Eric Weisstein's World of Mathematics, Aliquot Sequence
- Wikipedia, Aliquot sequence
Cf.
A059447 (least k such that n is the length of the aliquot sequence for k ending at 1).
-
f:=proc(n) local t1, i,j,k; t1:=[n]; for i from 2 to 50 do j:= t1[i-1]; k:=sigma(j)-j; t1:=[op(t1), k]; od: t1; end; # produces trajectory for n
-
f[x_] := (k++; DivisorSigma[1, x] - x); f[1] = 1;
Table[k = 0; FixedPoint[f, n]; k, {n, 1, 102}]
(* Jean-François Alcover, Jul 27 2011 *)
-
s := func(_plus(op(numlib::divisors(n)))-n,n): A003023 := proc(n) local i,T,m; begin m := n; i := 1; while T[ m ]<>1 and m<>1 do T[ m ] := 1; m := s(m); i := i+1 end_while; i-1 end_proc:
-
(define (A003023 n) (let loop ((visited (list n)) (i 0)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) (+ 1 i)) (else (loop (cons next visited) (+ 1 i)))))))
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 03 2017
A007906
Number of steps for aliquot sequence for n to converge to 0, or -1 if it never reaches 0.
Original entry on oeis.org
1, 2, 2, 3, 2, -1, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, -1, 7, 3, -1, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4, 3, 4, 9, 2, 13, 3, 5, 3, 4, 2, 11, 2, 9, 3, 4, 3, 12, 2, 5, 4, 6, 2, 9, 2, 5, 5, 5, 3, 11, 2, 7, 5, 6, 2, 6, 3, 9, 7, 7, 2, 10, 4, 6, 4, 4, -1, 9, 2, 3
Offset: 1
Michael Gerenrot (sch116(AT)yahoo.com)
- R. K. Guy, Unsolved Problems in Number Theory, B6.
- R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
-
(define (A007906 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) -1) (else (loop (cons next visited) (+ 1 i)))))))
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 02 2017
A008888
Aliquot sequence starting at 138.
Original entry on oeis.org
138, 150, 222, 234, 312, 528, 960, 2088, 3762, 5598, 6570, 10746, 13254, 13830, 19434, 20886, 21606, 25098, 26742, 26754, 40446, 63234, 77406, 110754, 171486, 253458, 295740, 647748, 1077612, 1467588, 1956812, 2109796, 1889486, 953914, 668966, 353578, 176792
Offset: 0
- R. K. Guy, Unsolved Problems in Number Theory, B6.
- Enoch Haga, Exploring Prime Numbers on Your PC, 2nd ed., 1998, pages 83-84 and Table 8, page 46. ISBN 1-885794-16-9.
-
f := proc(n) option remember; if n = 0 then 138; else sigma(f(n-1))-f(n-1); fi; end:
-
FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 138] // Most (* Jean-François Alcover, Mar 28 2020 *)
-
a(n,a=138)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018
A014360
Aliquot sequence starting at 552.
Original entry on oeis.org
552, 888, 1392, 2328, 3552, 6024, 9096, 13704, 20616, 30984, 46536, 86904, 165816, 367704, 628356, 837836, 628384, 630356, 491884, 368920, 499400, 772840, 978650, 975652, 744248, 696712, 628628, 857836, 857892, 1472268
Offset: 0
- R. K. Guy, Unsolved Problems in Number Theory, B6.
Some other examples:
A008885 (starting at 30) ..
A008892 (starting at 276),
A014361 (starting at 564) ..
A014365 (starting at 1134), see link to index for a more complete list.
-
FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, 552, 100] (* Jean-François Alcover, Mar 28 2020 *)
-
a(n, a=552)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 24 2018
A014365
Aliquot sequence starting at 1134.
Original entry on oeis.org
1134, 1770, 2550, 4146, 4158, 7362, 8628, 11532, 16272, 29670, 46362, 46374, 48666, 48678, 70362, 86118, 92058, 95622, 95634, 180846, 246834, 381006, 460458, 562902, 612138, 612150, 1316298, 1350582, 1509690, 3086790
Offset: 0
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B6, pp. 92-95.
Cf.
A098007 (length of aliquot sequences); some other examples:
A008885 (starting at 30) ..
A008892 (starting at 276),
A014360 (starting at 552) ..
A014364 (starting at 1074), see link to index for a more complete list.
-
f[n_] := DivisorSigma[1, n] - n; NestList[f, 1134, 100] (* Robert G. Wilson v, Dec 22 2012 *)
-
a(n, a=1134)={for(i=1, n, a=sigma(a)-a); a} \\ M. F. Hasler, Feb 25 2018
Showing 1-10 of 38 results.
Comments