A098089 Numbers k such that 7*R_k + 2 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
0, 2, 66, 86, 90, 102, 386, 624, 7784, 18536, 113757, 135879
Offset: 1
Examples
If k = 2, we get (7*10^2 + 11)/9 = (700+11)/9 = 79, which is prime.
Links
Programs
-
Magma
[n: n in [0..300] | IsPrime((7*10^n+11) div 9)]; // Vincenzo Librandi, Nov 22 2014
-
Mathematica
Do[ If[ PrimeQ[ 7(10^n - 1)/9 + 2], Print[n]], {n, 0, 5000}] (* Robert G. Wilson v, Oct 15 2004 *) Do[ If[ PrimeQ[((7*10^n) + 11)/9], Print[n]], {n, 0, 8131}] (* Robert G. Wilson v, Sep 27 2004 *) Select[Range[0, 700], PrimeQ[(7 10^# + 11) / 9] &] (* Vincenzo Librandi, Nov 22 2014 *)
Formula
a(n) = A056693(n-1) + 1 for n>1.
Extensions
a(9) from Kamada link by Ray Chandler, Dec 23 2010
a(1)=0 added and Mathematica programs adapted by Robert Price, Oct 28 2014
a(11)-a(12) from Tyler Busby, Feb 01 2023
Comments