cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A266146 Number of n-digit primes in which n-1 of the digits are 7's.

Original entry on oeis.org

4, 8, 10, 9, 12, 11, 8, 4, 9, 9, 10, 14, 14, 11, 16, 7, 10, 17, 7, 10, 9, 12, 9, 13, 11, 10, 14, 5, 3, 22, 6, 13, 13, 10, 8, 16, 8, 6, 16, 8, 13, 14, 8, 7, 8, 13, 9, 11, 13, 9, 14, 8, 4, 23, 13, 11, 8, 8, 8, 12, 13, 13, 11, 11, 10, 23, 11, 8, 8, 3, 6, 16, 12, 13, 12, 12, 8, 11, 8, 11, 14, 13, 7, 15, 12, 17, 11, 7, 9, 21, 6, 6, 11, 12, 6, 14, 14, 12, 13, 12, 11, 17, 10, 17, 18
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 8 from 17, 37, 47, 67, 71, 73, 79, 97. - _N. J. A. Sloane_, Dec 27 2015
a(3) = 10 since 277, 577, 677, 727, 757, 773, 787, 797, 877, and 977 are primes.
		

Crossrefs

Programs

  • Mathematica
    f7[n_] := Block[{cnt = k = 0, r = 7 (10^n - 1)/9, s = Range[0, 9] - 7}, While[k < n, cnt += Length@ Select[r + 10^k*s, PrimeQ@ # && IntegerLength@ # > k &]; k++]; cnt]; Array[f7, 100]
  • PARI
    a(n)={sum(i=0, n-1, sum(d=i==n-1, 9, isprime((10^n-1)/9*7 + (d-7)*10^i)))} \\ Andrew Howroyd, Feb 28 2018
    
  • Python
    from _future_ import division
    from sympy import isprime
    def A266146(n):
         return 4*n if (n==1 or n==2) else sum(1 for d in range(-7,3) for i in range(n) if isprime(7*(10**n-1)//9+d*10**i)) # Chai Wah Wu, Dec 27 2015

Extensions

a(2) corrected by Chai Wah Wu, Dec 27 2015
a(2) corrected in b-file as above by Andrew Howroyd, Feb 28 2018

A093404 Primes of the form 70*R_k + 9, where R_k is the repunit (A002275) of length k.

Original entry on oeis.org

79, 777777777777777777777777777777777777777777777777777777777777777779, 77777777777777777777777777777777777777777777777777777777777777777777777777777777777779, 777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779
Offset: 1

Views

Author

Rick L. Shepherd, Mar 28 2004

Keywords

Comments

Primes of the form (7*10^k + 11)/9. - Vincenzo Librandi, Nov 16 2010

Crossrefs

Cf. A002275, A056693 (corresponding k), A098089.

Programs

  • Mathematica
    Select[Table[FromDigits[PadLeft[{9},n,7]],{n,100}],PrimeQ] (* Harvey P. Dale, May 09 2012 *)

A056693 Numbers k such that 70*R_k + 9 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 65, 85, 89, 101, 385, 623, 7783, 18535, 113756, 135878
Offset: 1

Views

Author

Robert G. Wilson v, Aug 10 2000

Keywords

Comments

Also numbers k such that (7*10^(k+1)+11)/9 is prime.
a(12) > 2*10^5. - Tyler Busby, Feb 01 2023

Crossrefs

Programs

  • Magma
    [n: n in [1..400] |  IsPrime((7*10^(n+1)+11) div 9)];  Vincenzo Librandi, Nov 22 2014
  • Mathematica
    Do[ If[ PrimeQ[70*(10^n - 1)/9 + 9], Print[n]], {n, 0, 5000}]
    Select[Range[700], PrimeQ[(7 10^(# + 1) + 11) / 9] &] (* Vincenzo Librandi, Nov 22 2014 *)

Formula

a(n) = A098089(n+1) - 1. - Robert Price, Nov 22 2014

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(9) derived from A098089 by Robert Price, Nov 22 2014
a(10)-a(11) from Tyler Busby, Feb 01 2023
Showing 1-3 of 3 results.