cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098108 a(n) = 1 if n is an odd square, otherwise 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 03 2004

Keywords

Comments

Motivated by expansion of Jacobi theta function theta_2(x) = Sum_{m = -oo..oo} x^((m+1/2)^2) = 2*Sum_{m odd > 0} q^(m^2/4).
a(n) for n >= 1 is also equal to the Ramanujan number A000594(n) read mod 2. This follows from a theorem started by V. Kumar Murty (2011). Thanks to Benoit Cloitre for this reference. - N. J. A. Sloane, Aug 29 2017
The identification of this sequence with A000594 mod 2 was answered in Mathematics Stack Exchange question 71251. The idea is that (1 - q - q^2 + q^5 + q^7 - ...)^3 = 1 - 3*q + 5*q^3 - 7*q^6 + ... . Reduce mod 2 giving 1 + q + q^3 + q^6 + ... and using (x + y)^2 == (x^2 + y^2) (mod 2) three times gives (1 + q + q^3 + q^6 + ...)^8 == (1 + q^8 + q^24 + q^48 + ...) (mod 2) and we are done. - Michael Somos, Sep 12 2017

Examples

			G.f. = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + q^225 + q^289 + q^361 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5n].
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 93, Eq. (34.12).
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464.

Crossrefs

Cf. A000122 (theta_3), A002448 (theta_4).

Programs

  • Maple
    add(x^((m+1/2)^2),m=-10..10);
    # alternative
    A098108 := proc(n)
        if issqr(n) and type(n,'odd') then
            1;
        else
            0 ;
        end if;
    end proc:
    seq(A098108(n),n=0..30) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    Table[If[OddQ@ n && IntegerQ@ Sqrt[n], 1, 0], {n, 0, 120}] (* Michael De Vlieger, Mar 08 2015 *)
    Array[Boole@ OddQ@ RamanujanTau@ # &, 120] (* Michael De Vlieger, Aug 27 2017 *)
  • PARI
    {a(n) = n%2 && issquare( n)}; /* Michael Somos, Jun 08 2012 */
    
  • PARI
    A126811(n) = (ramanujantau(n)%2); \\ Antti Karttunen, Aug 27 2017

Formula

Multiplicative with a(p^e) = 1 if 2 divides e and p > 2, 0 otherwise. - Mitch Harris, Jun 09 2005
Dirichlet g.f.: zeta(2*s)*(1-2^(-2*s)). - R. J. Mathar, Mar 10 2011
G.f.: theta_2( 0, q^4) / 2. - Michael Somos, Jun 08 2012
Euler transform of period 16 sequence [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, ...]. - Michael Somos, Jun 08 2012
a(8*n + 1) = A010054(n). a(n) = 0 unless n == 1 (mod 8). - Michael Somos, Jun 08 2012
a(n) = A000035(n)*A010052(n). - Michel Marcus, Jun 09 2014
For n > 0, a(n) = floor( (sqrt(n)+1)/2 ) - floor( (sqrt(n-1)+1)/2 ). - Mikael Aaltonen, Mar 08 2015
G.f.: eta quotient eta(16*tau)^2/eta(8*tau) = q*Product_{n>=1} (1-q^(16*n))^2 / Product_{n>=1} (1-q^(8*n)), with q = exp(2*Pi*I*z), Im(z) > 0. See the Ono et al. reference, p. 4. - Wolfdieter Lang, Jan 11 2017
Sum_{k=1..n} a(k) ~ sqrt(n)/2. - Amiram Eldar, Oct 28 2023