A098293 Powers of 2 alternating with powers of 3.
1, 1, 2, 3, 4, 9, 8, 27, 16, 81, 32, 243, 64, 729, 128, 2187, 256, 6561, 512, 19683, 1024, 59049, 2048, 177147, 4096, 531441, 8192, 1594323, 16384, 4782969, 32768, 14348907, 65536, 43046721, 131072, 129140163, 262144, 387420489, 524288
Offset: 0
References
- Luc Brisson, Le Même et l'Autre dans la Structure Ontologique du Timée de Platon, Klincksieck, Paris, 1974, p. 317.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-6).
Crossrefs
Except for initial 1, reordering of A006899.
Programs
-
Magma
&cat[ [2^n, 3^n]: n in [0..30]]; // Vincenzo Librandi, May 10 2015
-
Maple
seq(seq(k^n, k=2..3), n=0..19); # Zerinvary Lajos, Jun 29 2007
-
Mathematica
With[{nn=20},Riffle[2^Range[0,nn],3^Range[0,nn]]] (* Harvey P. Dale, Nov 28 2011 *) Flatten[Table[{2^n, 3^n}, {n, 0, 20}]] (* Vincenzo Librandi, May 10 2015 *)
-
Python
def A098293(n): return 3**(n>>1) if n&1 else 1<<(n>>1) # Chai Wah Wu, Sep 24 2024
Formula
a(2*k) = 2^k, a(2*k+1) = 3^k, k>=0.
G.f.: (1+x-3*x^2-2*x^3)/((1-2*x^2)*(1-3*x^2)).
a(n) = ((5-(-1)^n)/2)^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Dec 13 2014
Comments