cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258439 Powers of 3 alternating with powers of 2.

Original entry on oeis.org

1, 1, 3, 2, 9, 4, 27, 8, 81, 16, 243, 32, 729, 64, 2187, 128, 6561, 256, 19683, 512, 59049, 1024, 177147, 2048, 531441, 4096, 1594323, 8192, 4782969, 16384, 14348907, 32768, 43046721, 65536, 129140163, 131072, 387420489, 262144, 1162261467
Offset: 0

Views

Author

Luce ETIENNE, May 30 2015

Keywords

Comments

a(n)*A098293(n) = A000400(floor(n/2)).

Crossrefs

Programs

  • GAP
    Flat(List([0..20],n->[3^n,2^n])); # Muniru A Asiru, Jul 16 2018
    
  • Magma
    &cat[[3^n, 2^n]: n in [0..35]]; // Vincenzo Librandi, Jul 17 2018
  • Maple
    seq(op([3^n,2^n]),n=0..20); # Muniru A Asiru, Jul 16 2018
  • Mathematica
    Flatten[Table[{3^n, 2^n}, {n, 0, 25}]] (* Vincenzo Librandi, Jul 17 2018 *)
  • PARI
    Vec(-(3*x^3+2*x^2-x-1)/((2*x^2-1)*(3*x^2-1)) + O(x^100)) \\ Colin Barker, May 30 2015
    

Formula

a(n) = ((5+(-1)^n)/2)^((2*n-1+(-1)^n)/4).
a(n) = 5*a(n-2)-6*a(n-4). - Colin Barker, May 30 2015
G.f.: -(3*x^3+2*x^2-x-1) / ((2*x^2-1)*(3*x^2-1)). - Colin Barker, May 30 2015

A375966 Powers of 3 alternating with powers of 4.

Original entry on oeis.org

1, 1, 3, 4, 9, 16, 27, 64, 81, 256, 243, 1024, 729, 4096, 2187, 16384, 6561, 65536, 19683, 262144, 59049, 1048576, 177147, 4194304, 531441, 16777216, 1594323, 67108864, 4782969, 268435456, 14348907, 1073741824, 43046721, 4294967296, 129140163, 17179869184
Offset: 0

Views

Author

Paul Curtz, Sep 04 2024

Keywords

Crossrefs

Cf. A000244 and A000302 interleaved.

Programs

  • Mathematica
    seq[len_] := Module[{m = Ceiling[len/2] - 1}, Riffle @@ Map[#^Range[0, m] &, {3, 4}]]; seq[36] (* Amiram Eldar, Sep 05 2024 *)
  • Python
    def A375966(n): return 1<<(n^1) if n&1 else 3**(n>>1) # Chai Wah Wu, Sep 24 2024

Formula

a(n) = 7*a(n-2) - 12*a(n-4) for n >= 4.
From Stefano Spezia, Sep 06 2024: (Start)
G.f.: (1 + x - 4*x^2 - 3*x^3)/((1 - 2*x)*(1 + 2*x)*(1 - 3*x^2)).
a(n) = (4*3^(n/2)*A059841(n) - (-2)^n + 2^n)/4.
E.g.f.: cosh(sqrt(3)*x) + cosh(x)*sinh(x). (End)

A097294 Contains exactly once every triple i,j,k such that i>j>k>0.

Original entry on oeis.org

3, 2, 1, 4, 2, 1, 5, 2, 1, 4, 3, 1, 6, 2, 1, 5, 3, 1, 4, 3, 2, 7, 2, 1, 6, 3, 1, 5, 4, 1, 5, 3, 2, 8, 2, 1, 7, 3, 1, 6, 4, 1, 6, 3, 2, 5, 4, 2, 9, 2, 1, 8, 3, 1, 7, 4, 1, 6, 5, 1, 7, 3, 2, 6, 4, 2, 5, 4, 3, 10, 2, 1, 9, 3, 1, 8, 4, 1, 7, 5, 1, 8, 3, 2, 7, 4, 2, 6, 5, 2, 6, 4, 3, 11, 2, 1, 10, 3, 1, 9, 4, 1, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Aug 05 2004

Keywords

Crossrefs

Cf. A098293.

Formula

Obtained by reversing triples in A097293.
Showing 1-3 of 3 results.