A098361 Multiplication table of the factorial numbers read by antidiagonals.
1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 24, 6, 4, 6, 24, 120, 24, 12, 12, 24, 120, 720, 120, 48, 36, 48, 120, 720, 5040, 720, 240, 144, 144, 240, 720, 5040, 40320, 5040, 1440, 720, 576, 720, 1440, 5040, 40320, 362880, 40320, 10080, 4320, 2880, 2880, 4320, 10080, 40320, 362880
Offset: 0
Examples
The array A(n, k) starts in row n=0 with columns k >= 0 as: 1, 1, 2, 6, 24, 120, ... 1, 1, 2, 6, 24, 120, ... 2, 2, 4, 12, 48, 240, ... 6, 6, 12, 36, 144, 720, ... 24, 24, 48, 144, 576, 2880, ... 120, 120, 240, 720, 2880, 14400, ... 720, 720, 1440, 4320, 17280, 86400, ... 5040, 5040, 10080, 30240, 120960, 604800, ... 40320, 40320, 80640, 241920, 967680, 4838400, ... 362880, 362880, 725760, 2177280, 8709120, 43545600, ... ... The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10... 0: 1 1: 1 1 2: 2 1 2 3: 6 2 2 6 4: 24 6 4 6 24 5: 120 24 12 12 24 120 6: 720 120 48 36 48 120 720 7: 5040 720 240 144 144 240 720 5040 8: 40320 5040 1440 720 576 720 1440 5040 40320 9: 362880 40320 10080 4320 2880 2880 4320 10080 40320 362880 10: 3628800 362880 80640 30240 17280 14400 17280 30240 80640 362880 3628800 ... - _Wolfdieter Lang_, May 07 2018
References
- R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach (Revised Edition), 2003, Ch 2.4 Table 2-2.
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
- Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
Links
- Stefano Spezia, First 101 antidiagonals of the array, flattened
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- I. V. Statsenko, Problem on variants of cluster formation at permutations in ordered structures, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2023, pp. 7-10. In Russian.
Programs
-
Magma
F:=Factorial; [F(n-k)*F(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2022
-
Maple
seq(print(seq(k!*(n-k)!,k=0..n)),n=0..6); # Peter Luschny, Aug 23 2010
-
Mathematica
Table[(n+1)!*Beta[n-k+1, k+1], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Oct 29 2008 *)
-
SageMath
f=factorial; flatten([[f(n-k)*f(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 12 2022
Formula
T(n, k) = k!*(n-k)! = n!/C(n,k), (0<=k<=n). - Peter Luschny, Aug 23 2010
Array A(n, k) = n!*k! = (k+n)!/binomial(k+n,n). - R. J. Mathar, Dec 10 2010
E.g.f. as array: 1/((1 - x)*(1 - y)). - Stefano Spezia, Jul 10 2020
Comments