A098482 Expansion of 1/sqrt((1-x)^2 - 4*x^4).
1, 1, 1, 1, 3, 7, 13, 21, 37, 73, 147, 283, 531, 1007, 1953, 3817, 7423, 14371, 27877, 54333, 106189, 207585, 405743, 793719, 1554889, 3049525, 5984803, 11751067, 23086695, 45388291, 89289765, 175746797, 346077153, 681795925, 1343790319, 2649687079, 5226711507
Offset: 0
Examples
From _Joerg Arndt_, Jul 01 2011: (Start) The triangle of lattice paths from (0,0) to (n,k) using steps (3,1), (1,3), (1,1) begins 1; 0, 1; 0, 0, 1; 0, 1, 0, 1; 0, 0, 2, 0, 3; 0, 0, 0, 3, 0, 7; 0, 0, 1, 0, 4, 0, 13; 0, 0, 0, 3, 0, 8, 0, 21; 0, 0, 0, 0, 6, 0, 18, 0, 37; 0, 0, 0, 1, 0, 10, 0, 37, 0, 73; The triangle of lattice paths from (0,0) to (n,k) using steps (4,0), (0,4), (1,1) begins 1; 0, 1; 0, 0, 1; 0, 0, 0, 1; 1, 0, 0, 0, 3; 0, 2, 0, 0, 0, 7; 0, 0, 3, 0, 0, 0, 13; 0, 0, 0, 4, 0, 0, 0, 21; 1, 0, 0, 0, 8, 0, 0, 0, 37; 0, 3, 0, 0, 0, 18, 0, 0, 0, 73; The diagonals of both appear to be this sequence. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
Programs
-
Maple
seq(add(binomial(n-3*k,k)*binomial(n-2*k,k),k=0..floor(n/3)),n=0..34); # Zerinvary Lajos, Apr 03 2007
-
Mathematica
CoefficientList[Series[1/Sqrt[(1-x)^2-4*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
-
PARI
/* as lattice paths, assuming the first comment is true */ /* same as in A092566 but use either of */ steps=[[4,0], [0,4], [1,1]]; steps=[[3,1], [1,3], [1,1]]; /* Joerg Arndt, Jul 01 2011 */
Formula
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k, k) * binomial(n-3*k, k).
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 4*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ 2^(n+1/2) / sqrt(3*Pi*n). - Vaclav Kotesovec, Jun 23 2014
G.f.: 1/(1 - x - 2*x^4/(1 - x - x^4/(1 - x - x^4/(1 - x - x^4/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k, 2*k) * binomial(2*k, k). - Greg Dresden and Leo Zhang, Jul 08 2025
Comments