cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098482 Expansion of 1/sqrt((1-x)^2 - 4*x^4).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 13, 21, 37, 73, 147, 283, 531, 1007, 1953, 3817, 7423, 14371, 27877, 54333, 106189, 207585, 405743, 793719, 1554889, 3049525, 5984803, 11751067, 23086695, 45388291, 89289765, 175746797, 346077153, 681795925, 1343790319, 2649687079, 5226711507
Offset: 0

Views

Author

Paul Barry, Sep 10 2004

Keywords

Comments

From Joerg Arndt, Jul 01 2011: (Start)
Empirical: Number of lattice paths from (0,0) to (n,n) using steps (4,0), (0,4), (1,1).
It appears that 1/sqrt((1-x)^2-4*x^s) is the g.f. for lattice paths from (0,0) to (n,n) using steps (s,0), (0,s), (1,1).
Empirical: Number of lattice paths from (0,0) to (n,n) using steps (3,1), (1,3), (1,1). (End)
1/sqrt((1-x)^2-4*r*x^4) expands to sum(k=0..floor(n/2), binomial(n-2*k,k)*binomial(n-3*k,k)*r^k ).
Diagonal of the rational function 1 / ((1-x)*(1-y) - x^3*y^4). - Seiichi Manyama, Apr 29 2025
a(n) is the number of ways to tile a strip of length n with 1 X 1 squares and 1 X 2 red dominos and 1 X 2 blue dominos, with an equal number of red and blue dominos. - Greg Dresden and Leo Zhang, Jul 08 2025

Examples

			From _Joerg Arndt_, Jul 01 2011: (Start)
The triangle of lattice paths from (0,0) to (n,k) using steps (3,1), (1,3), (1,1) begins
  1;
  0, 1;
  0, 0, 1;
  0, 1, 0, 1;
  0, 0, 2, 0, 3;
  0, 0, 0, 3, 0, 7;
  0, 0, 1, 0, 4, 0, 13;
  0, 0, 0, 3, 0, 8, 0, 21;
  0, 0, 0, 0, 6, 0, 18, 0, 37;
  0, 0, 0, 1, 0, 10, 0, 37, 0, 73;
The triangle of lattice paths from (0,0) to (n,k) using steps (4,0), (0,4), (1,1) begins
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  1, 0, 0, 0, 3;
  0, 2, 0, 0, 0, 7;
  0, 0, 3, 0, 0, 0, 13;
  0, 0, 0, 4, 0, 0, 0, 21;
  1, 0, 0, 0, 8, 0, 0, 0, 37;
  0, 3, 0, 0, 0, 18, 0, 0, 0, 73;
The diagonals of both appear to be this sequence.  (End)
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n-3*k,k)*binomial(n-2*k,k),k=0..floor(n/3)),n=0..34); # Zerinvary Lajos, Apr 03 2007
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x)^2-4*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
  • PARI
    /* as lattice paths, assuming the first comment is true */
    /* same as in A092566 but use either of */
    steps=[[4,0], [0,4], [1,1]];
    steps=[[3,1], [1,3], [1,1]];
    /* Joerg Arndt, Jul 01 2011 */

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k, k) * binomial(n-3*k, k).
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 4*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ 2^(n+1/2) / sqrt(3*Pi*n). - Vaclav Kotesovec, Jun 23 2014
G.f.: 1/(1 - x - 2*x^4/(1 - x - x^4/(1 - x - x^4/(1 - x - x^4/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k, 2*k) * binomial(2*k, k). - Greg Dresden and Leo Zhang, Jul 08 2025