cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098617 G.f. A(x) satisfies: A(x*G(x)) = G(x), where G(x) is the g.f. for A098616(n) = Pell(n+1)*Catalan(n).

Original entry on oeis.org

1, 2, 6, 16, 46, 128, 364, 1024, 2902, 8192, 23188, 65536, 185420, 524288, 1483096, 4194304, 11863910, 33554432, 94908420, 268435456, 759257636, 2147483648, 6074027496, 17179869184, 48592102396, 137438953472, 388736403144
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2004

Keywords

Comments

G.f. satisfies: A(x) = x/Series_Reversion(x*G(x)), where G(x) is the g.f. for A098616 = {1*1, 2*1, 5*2, 12*5, 29*14, 70*42, 169*132, ...}.
Hankel transform is 2^n. - Paul Barry Jan 19 2011

Examples

			G.f. = 1 + 2*x + 6*x^2 + 16*x^3 + 46*x^4 + 128*x^5 + 364*x^6 + 1024*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1-4*x^2] + 2*x)/(1-8*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 31 2014 *)
  • Maxima
    a(n):=2^n*sum(binomial((n-1)/2, j),j,0,n/2); /* Vladimir Kruchinin, May 18 2011 */
  • PARI
    a(n)=polcoeff((sqrt(1-4*x^2+x^2*O(x^n))+2*x)/(1-8*x^2),n)
    

Formula

G.f.: (sqrt(1-4*x^2) + 2*x)/(1-8*x^2).
a(2*n+1) = 2*8^n.
a(n) = sum{k=0..floor((n+1)/2), (C(n,k)-C(n,k-1))*A000129(n-2k+1)}. - Paul Barry Jan 19 2011
a(n) = 2^n*sum(j=0..n/2, binomial((n-1)/2,j)). - Vladimir Kruchinin, May 18 2011
a(n) = Sum_{k, 0<=k<=n} A201093(n,k)*2^k. - Philippe Deléham, Nov 27 2011
G.f.: 1/(1-2x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-... (continued fraction). - Philippe Deléham, Nov 27 2011
Recurrence: (n+6)*a(n)=256*(n+1)*a(n-6)-128*(n+3)*a(n-4)+4*(5*n+23)*a(n-2), for even n. - Fung Lam, Mar 31 2014
Recurrence: n*a(n) = 12*(n-1)*a(n-2) - 32*(n-3)*a(n-4). - Vaclav Kotesovec, Mar 31 2014
Asymptotic approximation: a(n) ~ (4/sqrt(2))^n/sqrt(2)+2^(n+1)/sqrt(2*Pi*n^3), for even n. - Fung Lam, Mar 31 2014
0 = a(n) * (+64*a(n+1) - 8*a(n+3)) + a(n+2) * (-8*a(n+1) + a(n+3)) if n>=0. - Michael Somos, Apr 07 2014