cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098658 a(n) = 3^n*(2*n)!/(n!)^2.

Original entry on oeis.org

1, 6, 54, 540, 5670, 61236, 673596, 7505784, 84440070, 956987460, 10909657044, 124965162504, 1437099368796, 16581915793800, 191876454185400, 2225766868550640, 25874539846901190, 301362287628613860
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (0,1) and three kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
Sixth binomial transform of 1/sqrt(1-36*x^2).
Diagonal of the rational function 1 / (1 - 3*x - y). - Ilya Gutkovskiy, Apr 24 2025

Crossrefs

Programs

  • Magma
    [3^n*Factorial(2*n)/Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
  • Mathematica
    Table[3^n (2n)!/(n!)^2,{n,0,20}] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,0], [1,0], [0,1]]; /* note the triple [1,0] */
    /* Joerg Arndt, Jun 30 2011 */
    

Formula

G.f.: 1/sqrt((1-6*x)^2-36*x^2) = 1/sqrt(1-12*x).
E.g.f.: exp(6*x)*BesselI(0, 6x).
a(n) = [t^n](1+6*t+9*t^2)^n.
a(n) = 3^n*A000984(n). - R. J. Mathar, Oct 10 2012
G.f.: Q(0), where Q(k) = 1 + 12*x*(4*k+1)/( 4*k+2 - 12*x*(4*k+2)*(4*k+3)/(12*x*(4*k+3) + 4*(k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
n*a(n) +6*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 27 2014
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 6*x + 45*x^2 + 378*x^3 + ... is the o.g.f. for A101600. - Peter Bala, Jul 16 2015
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 12/11 + 12*sqrt(11)*arcsin(1/sqrt(12))/121.
Sum_{n>=0} (-1)^n/a(n) = 12/13 - 12*sqrt(13)*arcsinh(1/sqrt(12))/169. (End)
From Peter Bala, Oct 12 2024: (Start)
a(n) = Integral_{x = 0..12} x^n * w(x) dx, where w(x) = 1/( Pi*sqrt(x*(12 - x)) ) is positive on the interval (0, 12). The weight function w(x) is singular at x = 0 and at x = 12 and is the solution of the Hausdorff moment problem.
Binomial transform of A322246.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r. (End)