A322246
Expansion of g.f. 1/sqrt(1 - 10*x - 11*x^2).
Original entry on oeis.org
1, 5, 43, 395, 3811, 37775, 381205, 3895925, 40193395, 417697775, 4366043473, 45852847265, 483447391309, 5114115365585, 54252753665083, 576948203182475, 6148667240501395, 65651351673108575, 702154850931542305, 7520927108084780225, 80666557496061224281, 866249916689104887005, 9312623039533986068863, 100216202771039576006495, 1079454220008183284872861
Offset: 0
G.f.: A(x) = 1 + 5*x + 43*x^2 + 395*x^3 + 3811*x^4 + 37775*x^5 + 381205*x^6 + 3895925*x^7 + 40193395*x^8 + 417697775*x^9 + 4366043473*x^10 + ...
such that A(x)^2 = 1/(1 - 10*x - 11*x^2).
RELATED SERIES.
exp( Sum_{n>=1} a(n)*x^n/n ) = 1 + 5*x + 34*x^2 + 260*x^3 + 2137*x^4 + 18425*x^5 + 164395*x^6 + 1505075*x^7 + 14058979*x^8 + 133459055*x^9 + 1283753308*x^10 + ...
-
List([0..30], n -> Sum([0..n], k-> (-1)^(n-k)*3^k*Binomial(n,k) *Binomial(2*k,k))); # G. C. Greubel, Dec 09 2018
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1 - 10*x - 11*x^2) )); // G. C. Greubel, Dec 09 2018
-
f:= gfun:-rectoproc({{(11*n+11)*a(n)+(15+10*n)*a(n+1)+(-n-2)*a(n+2), a(0) = 1, a(1) = 5},a(n),remember):
map(f, [$0..40]); # Robert Israel, Dec 09 2018
-
CoefficientList[Series[1/Sqrt[1 - 10*x - 11*x^2], {x,0,30}], x] (* G. C. Greubel, Dec 09 2018 *)
-
/* Using generating function: */
{a(n) = polcoeff( 1/sqrt(1 - 10*x - 11*x^2 +x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
-
/* Using binomial formula: */
{a(n) = sum(k=0,n, (-1)^(n-k)*3^k*binomial(n,k)*binomial(2*k,k))}
for(n=0,30,print1(a(n),", "))
-
/* Using binomial formula: */
{a(n) = sum(k=0,n, 11^(n-k)*(-3)^k*binomial(n,k)*binomial(2*k,k))}
for(n=0,30,print1(a(n),", "))
-
/* a(n) is central coefficient in (1 + 5*x + 9*x^2)^n */
{a(n) = polcoeff( (1 + 5*x + 9*x^2 +x*O(x^n))^n, n)}
for(n=0,30,print1(a(n),", "))
-
s=(1/sqrt(1 - 10*x - 11*x^2)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 09 2018
A101600
Expansion of g.f. c(3x)^2, where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 6, 45, 378, 3402, 32076, 312741, 3127410, 31899582, 330595668, 3471254514, 36848701764, 394807518900, 4263921204120, 46370143094805, 507343918566690, 5580783104233590, 61682339573108100, 684673969261499910, 7629224228913856140, 85308598196036755020
Offset: 0
-
Z[0]:=1: for k to 30 do Z[k]:=simplify(1/(1-3*z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(coeff(gser, z, n)/3, n=1..19); # Zerinvary Lajos, May 21 2008
-
a[n_] := 3^n * CatalanNumber[n + 1]; Array[a, 20, 0] (* Amiram Eldar, May 15 2022 *)
A119309
a(n) = binomial(2*n,n) * 6^n.
Original entry on oeis.org
1, 12, 216, 4320, 90720, 1959552, 43110144, 960740352, 21616657920, 489977579520, 11171488813056, 255928652808192, 5886359014588416, 135839054182809600, 3143703825373593600, 72933928748667371520
Offset: 0
a(3) = binomial(2*3,3) * (6^3) = 20 * 216 = 4320. - _Indranil Ghosh_, Mar 03 2017
-
Table[Binomial[2n,n]*(6^n), {n, 0, 15}] (* Indranil Ghosh, Mar 03 2017 *)
-
/* same as in A092566 but use */
steps=[[1,0], [1,0], [1,0], [0,1], [0,1]]; /* note repeated entries */
/* Joerg Arndt, Jun 30 2011 */
-
a(n)=binomial(2*n,n)*6^n \\ Charles R Greathouse IV, Mar 03 2017
-
import math
f=math.factorial
def C(n,r): return f(n)//f(r)//f(n-r)
def A119309(n): return C(2*n,n)*(6**n) # Indranil Ghosh, Mar 03 2017
A224881
Expansion of 1/(1 - 16*x)^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
-
List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
-
CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
-
{a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
for(n=0,30,print1(a(n),", "))
A298799
Expansion of (1-27*x)^(-1/9).
Original entry on oeis.org
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
-
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
# Alternative:
A298799 := n -> (-27)^n*binomial(-1/9, n):
seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
A115903
Expansion of (1-12*x)^(-3/2).
Original entry on oeis.org
1, 18, 270, 3780, 51030, 673596, 8756748, 112586760, 1435481190, 18182761740, 229102797924, 2874198737592, 35927484219900, 447711726432600, 5564417171376600, 68998772925069840, 853859814947739270, 10547680067001485100, 130088054159684982900, 1602137088071909789400
Offset: 0
-
[(3^n*Factorial(2*n)/Factorial(n)^2)*(2*n+1): n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
-
CoefficientList[Series[(1-12x)^(-3/2),{x,0,20}],x] (* Harvey P. Dale, Oct 26 2016 *)
A360238
a(n) = [y^n*x^n/n] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for n >= 1.
Original entry on oeis.org
2, 42, 1376, 60934, 3377252, 224036904, 17282039280, 1519096411230, 149867251224092, 16398595767212452, 1971137737765484444, 258215735255164847944, 36617351885600586385222, 5588967440618883091216208, 913592455995572681826313856, 159241707066923571547572653630
Offset: 1
L.g.f.: A(x) = 2*x + 42*x^2/2 + 1376*x^3/3 + 60934*x^4/4 + 3377252*x^5/5 + 224036904*x^6/6 + 17282039280*x^7/7 + 1519096411230*x^8/8 + ...
a(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (m + y)^(2*m) * x^m ) = (y^2 + 2*y + 1)*x + (y^4 + 12*y^3 + 42*y^2 + 60*y + 31)*x^2/2 + (y^6 + 30*y^5 + 297*y^4 + 1376*y^3 + 3348*y^2 + 4188*y + 2140)*x^3/3 + (y^8 + 56*y^7 + 1100*y^6 + 10792*y^5 + 60934*y^4 + 209464*y^3 + 436692*y^2 + 510952*y + 258779)*x^4/4 + (y^10 + 90*y^9 + 2945*y^8 + 49960*y^7 + 510160*y^6 + 3377252*y^5 + 14971780*y^4 + 44457000*y^3 + 85336175*y^2 + 96141170*y + 48446971)*x^5/5 + (y^12 + 132*y^11 + 6486*y^10 + 169236*y^9 + 2730921*y^8 + 29547696*y^7 + 224036904*y^6 + 1214958240*y^5 + 4717830978*y^4 + 12868488144*y^3 + 23497266672*y^2 + 25858665696*y + 12994749280)*x^6/6 + ...
Exponentiation yields the g.f. of A360239:
exp(A(x)) = 1 + 2*x + 23*x^2 + 502*x^3 + 16414*x^4 + 716936*x^5 + 39167817*x^6 + 2567058766*x^7 + 196159319943*x^8 + ... + A360239(n)*x^n + ...
-
{a(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(2*m) *x^m ) +x*O(x^n) ), n, x), n, y)}
for(n=0,20,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments