cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A322246 Expansion of g.f. 1/sqrt(1 - 10*x - 11*x^2).

Original entry on oeis.org

1, 5, 43, 395, 3811, 37775, 381205, 3895925, 40193395, 417697775, 4366043473, 45852847265, 483447391309, 5114115365585, 54252753665083, 576948203182475, 6148667240501395, 65651351673108575, 702154850931542305, 7520927108084780225, 80666557496061224281, 866249916689104887005, 9312623039533986068863, 100216202771039576006495, 1079454220008183284872861
Offset: 0

Views

Author

Paul D. Hanna, Dec 09 2018

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 43*x^2 + 395*x^3 + 3811*x^4 + 37775*x^5 + 381205*x^6 + 3895925*x^7 + 40193395*x^8 + 417697775*x^9 + 4366043473*x^10 + ...
such that A(x)^2 = 1/(1 - 10*x - 11*x^2).
RELATED SERIES.
exp( Sum_{n>=1} a(n)*x^n/n ) = 1 + 5*x + 34*x^2 + 260*x^3 + 2137*x^4 + 18425*x^5 + 164395*x^6 + 1505075*x^7 + 14058979*x^8 + 133459055*x^9 + 1283753308*x^10 + ...
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> Sum([0..n], k-> (-1)^(n-k)*3^k*Binomial(n,k) *Binomial(2*k,k))); # G. C. Greubel, Dec 09 2018
  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1 - 10*x - 11*x^2) )); // G. C. Greubel, Dec 09 2018
    
  • Maple
    f:= gfun:-rectoproc({{(11*n+11)*a(n)+(15+10*n)*a(n+1)+(-n-2)*a(n+2), a(0) = 1, a(1) = 5},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Dec 09 2018
  • Mathematica
    CoefficientList[Series[1/Sqrt[1 - 10*x - 11*x^2], {x,0,30}], x] (* G. C. Greubel, Dec 09 2018 *)
  • PARI
    /* Using generating function: */
    {a(n) = polcoeff( 1/sqrt(1 - 10*x - 11*x^2 +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, (-1)^(n-k)*3^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, 11^(n-k)*(-3)^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* a(n) is central coefficient in (1 + 5*x + 9*x^2)^n */
    {a(n) = polcoeff( (1 + 5*x + 9*x^2 +x*O(x^n))^n, n)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    s=(1/sqrt(1 - 10*x - 11*x^2)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = Sum_{k=0..n} 11^(n-k) * (-3)^k * binomial(n,k)*binomial(2*k,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * binomial(n,k)*binomial(2*k,k).
a(n) equals the (central) coefficient of x^n in (1 + 5*x + 9*x^2)^n.
D-finite with recurrence: (11*n+11)*a(n)+(15+10*n)*a(n+1)+(-n-2)*a(n+2)=0. - Robert Israel, Dec 09 2018
a(n) ~ 11^(n + 1/2) / (2*sqrt(3*Pi*n)). - Vaclav Kotesovec, Dec 13 2018
E.g.f.: exp(5*x) * BesselI(0,6*x). - Ilya Gutkovskiy, Feb 02 2021
a(n) = 11^n*2F1([1/2, -n], [1], 12/11), where 2F1 is the hypergeometric function. - Stefano Spezia, Feb 02 2021
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = -1..11} x^n * w(x) dx, where w(x) = 1/( Pi*sqrt((1 + x)*(11 - x)) ) is positive on the interval (-1, 11). The weight function w(x) is singular at x = -1 and at x = 11 and is the solution of the Hausdorff moment problem.
Inverse binomial transform of A098658.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r. (End)
a(n) = (1/4)^n * Sum_{k=0..n} (-1)^k * 11^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A101600 Expansion of g.f. c(3x)^2, where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 6, 45, 378, 3402, 32076, 312741, 3127410, 31899582, 330595668, 3471254514, 36848701764, 394807518900, 4263921204120, 46370143094805, 507343918566690, 5580783104233590, 61682339573108100, 684673969261499910, 7629224228913856140, 85308598196036755020
Offset: 0

Views

Author

Paul Barry, Dec 08 2004

Keywords

Crossrefs

Programs

  • Maple
    Z[0]:=1: for k to 30 do Z[k]:=simplify(1/(1-3*z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(coeff(gser, z, n)/3, n=1..19); # Zerinvary Lajos, May 21 2008
  • Mathematica
    a[n_] := 3^n * CatalanNumber[n + 1]; Array[a, 20, 0] (* Amiram Eldar, May 15 2022 *)

Formula

G.f.: 4/(1+sqrt(1-12*x))^2.
a(n) = 3^n * A000108(n+1).
(n+2)*a(n) -6*(2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 15 2011
O.g.f. A(x) = 1/x*series reversion( x/(1 + 3*x)^2 ). 1 + x*A'(x)/A(x) = 1/sqrt(1 - 12*x) is the o.g.f. for A098658. - Peter Bala, Jul 17 2015
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 87/121 + 648*arcsin(1/(2*sqrt(3)))/(121*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 93/169 + 648*arcsinh(1/(2*sqrt(3)))/(169*sqrt(13)). (End)
E.g.f.: BesselI(1,6*z)*exp(6*z)/(3*z) where BesselI is the modified Bessel function of type I. - Karol A. Penson, Feb 17 2025

A119309 a(n) = binomial(2*n,n) * 6^n.

Original entry on oeis.org

1, 12, 216, 4320, 90720, 1959552, 43110144, 960740352, 21616657920, 489977579520, 11171488813056, 255928652808192, 5886359014588416, 135839054182809600, 3143703825373593600, 72933928748667371520
Offset: 0

Views

Author

Reinhard Zumkeller, May 14 2006

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using three kinds of steps (1,0) and two kinds of steps (0,1). - Joerg Arndt, Jul 01 2011
Central terms of the triangles in A013620 and A038220.

Examples

			a(3) = binomial(2*3,3) * (6^3) = 20 * 216 = 4320. - _Indranil Ghosh_, Mar 03 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n]*(6^n), {n, 0, 15}] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,0], [1,0], [0,1], [0,1]]; /* note repeated entries */
    /* Joerg Arndt, Jun 30 2011 */
    
  • PARI
    a(n)=binomial(2*n,n)*6^n \\ Charles R Greathouse IV, Mar 03 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n)//f(r)//f(n-r)
    def A119309(n): return C(2*n,n)*(6**n) # Indranil Ghosh, Mar 03 2017

Formula

a(n) = 6^n * A000984(n).
G.f.: 1/sqrt(1-24*x). - Zerinvary Lajos, Dec 20 2008 [Corrected by Joerg Arndt, Jul 01 2011]
D-finite with recurrence: n*a(n) +12*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
a(n) = 2^n*A098658(n) = 3^n*A059304(n). - R. J. Mathar, Jan 20 2020
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 24/23 + 24*sqrt(23)*arcsin(1/sqrt(24))/529.
Sum_{n>=0} (-1)^n/a(n) = 24/25 - 24*arcsinh(1/sqrt(24))/125. (End)
E.g.f.: exp(12*x) * BesselI(0,12*x). - Ilya Gutkovskiy, Sep 14 2021

A224881 Expansion of 1/(1 - 16*x)^(1/8).

Original entry on oeis.org

1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
		

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), this sequence (b=16), A034688 (b=25), A298799 (b=27), A004993 (b=36), A034835 (b=49).
Cf. A301271.

Programs

  • GAP
    List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    {a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
    for(n=0,30,print1(a(n),", "))
    

Formula

a(n) = (2^n/n!) * Product_{k=0..n-1} (8*k + 1).
a(n) ~ 16^n/(GAMMA(1/8)*n^(7/8)). - Vaclav Kotesovec, Jul 24 2013

A298799 Expansion of (1-27*x)^(-1/9).

Original entry on oeis.org

1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Comments

Conjecture: a(p*n) == a(n) (mod p^2) for prime p == 1 (mod 9) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/9 and 1 <= k <= (p-1)/9. Cf. A034171, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), A224881 (b=16), A034688 (b=25), this sequence (b=27), A004993 (b=36), A034835 (b=49).

Programs

  • GAP
    List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
    # Alternative:
    A298799 := n -> (-27)^n*binomial(-1/9, n):
    seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
  • PARI
    N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
    

Formula

a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

A115903 Expansion of (1-12*x)^(-3/2).

Original entry on oeis.org

1, 18, 270, 3780, 51030, 673596, 8756748, 112586760, 1435481190, 18182761740, 229102797924, 2874198737592, 35927484219900, 447711726432600, 5564417171376600, 68998772925069840, 853859814947739270, 10547680067001485100, 130088054159684982900, 1602137088071909789400
Offset: 0

Views

Author

Paul Barry, Feb 02 2006

Keywords

Crossrefs

Programs

  • Magma
    [(3^n*Factorial(2*n)/Factorial(n)^2)*(2*n+1): n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
  • Mathematica
    CoefficientList[Series[(1-12x)^(-3/2),{x,0,20}],x] (* Harvey P. Dale, Oct 26 2016 *)

Formula

G.f.: 1/((1-12*x)*sqrt(1-12*x)).
a(n) = Jacobi_P(n,1/2,1/2,1)*12^n.
a(n) = 3^n*(2*n+1)*binomial(2*n,n) = 3^n*A002457(n).
a(n) = (2*n+1)*A098658(n).
D-finite with recurrence: n*a(n) - 6*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 07 2012
From Amiram Eldar, Jan 27 2024: (Start)
Sum_{n>=0} 1/a(n) = 12*arcsin(1/sqrt(12))/sqrt(11).
Sum_{n>=0} (-1)^n/a(n) = 12*arcsinh(1/sqrt(12))/sqrt(13). (End)

A360238 a(n) = [y^n*x^n/n] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for n >= 1.

Original entry on oeis.org

2, 42, 1376, 60934, 3377252, 224036904, 17282039280, 1519096411230, 149867251224092, 16398595767212452, 1971137737765484444, 258215735255164847944, 36617351885600586385222, 5588967440618883091216208, 913592455995572681826313856, 159241707066923571547572653630
Offset: 1

Views

Author

Paul D. Hanna, Feb 11 2023

Keywords

Comments

Related sequence: A000984(n) = binomial(2*n,n) = [y^n*x^n/n] log( Sum_{m>=0} (1 + y)^(2*m) * x^m ) for n >= 1.

Examples

			L.g.f.: A(x) = 2*x + 42*x^2/2 + 1376*x^3/3 + 60934*x^4/4 + 3377252*x^5/5 + 224036904*x^6/6 + 17282039280*x^7/7 + 1519096411230*x^8/8 + ...
a(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (m + y)^(2*m) * x^m ) = (y^2 + 2*y + 1)*x + (y^4 + 12*y^3 + 42*y^2 + 60*y + 31)*x^2/2 + (y^6 + 30*y^5 + 297*y^4 + 1376*y^3 + 3348*y^2 + 4188*y + 2140)*x^3/3 + (y^8 + 56*y^7 + 1100*y^6 + 10792*y^5 + 60934*y^4 + 209464*y^3 + 436692*y^2 + 510952*y + 258779)*x^4/4 + (y^10 + 90*y^9 + 2945*y^8 + 49960*y^7 + 510160*y^6 + 3377252*y^5 + 14971780*y^4 + 44457000*y^3 + 85336175*y^2 + 96141170*y + 48446971)*x^5/5 + (y^12 + 132*y^11 + 6486*y^10 + 169236*y^9 + 2730921*y^8 + 29547696*y^7 + 224036904*y^6 + 1214958240*y^5 + 4717830978*y^4 + 12868488144*y^3 + 23497266672*y^2 + 25858665696*y + 12994749280)*x^6/6 + ...
Exponentiation yields the g.f. of A360239:
exp(A(x)) = 1 + 2*x + 23*x^2 + 502*x^3 + 16414*x^4 + 716936*x^5 + 39167817*x^6 + 2567058766*x^7 + 196159319943*x^8 + ... + A360239(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(2*m) *x^m ) +x*O(x^n) ), n, x), n, y)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ (1 - exp(-1)/4) * 2^(2*n) * n^(n + 1/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 12 2023
Showing 1-7 of 7 results.