A322247
a(n) = A322246(n)^2, the square of the central coefficient in (1 + 5*x + 9*x^2)^n.
Original entry on oeis.org
1, 25, 1849, 156025, 14523721, 1426950625, 145317252025, 15178231605625, 1615509001626025, 174471431239950625, 19062335608125901729, 2102483602307417980225, 233721380163477368733481, 26154175972512598202392225, 2943361280244176889333396889, 332869229155486455718147125625, 37806108834415039621850996946025, 4310099976506176089944803738530625, 493021434686696395739629566004713025
Offset: 0
G.f.: A(x) = 1 + 25*x + 1849*x^2 + 156025*x^3 + 14523721*x^4 + 1426950625*x^5 + 145317252025*x^6 + 15178231605625*x^7 + 1615509001626025*x^8 + ...
that is,
A(x) = 1 + 5^2*x + 43^2*x^2 + 395^2*x^3 + 3811^2*x^4 + 37775^2*x^5 + 381205^2*x^6 + 3895925^2*x^7 + 40193395^2*x^8 + 417697775^2*x^9 + ... + A322246(n)^2*x^n + ...
-
a[n_] := Sum[(-1)^(n-k) * 3^k * Binomial[n,k] * Binomial[2k,k], {k, 0, n}]^2; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
-
/* a(n) = A322246(n)^2 - g.f. */
{a(n)=polcoeff(1/sqrt( (1 - x)*(1 + 11*x) +x*O(x^n)), n)^2}
for(n=0, 20, print1(a(n), ", "))
-
/* a(n) = A322246(n)^2 - g.f. */
{a(n) = polcoeff( (1 + 5*x + 9*x^2 +x*O(x^n))^n, n)^2}
for(n=0, 20, print1(a(n), ", "))
-
/* a(n) = A322246(n)^2 - binomial sum */
{a(n) = sum(k=0,n, (-1)^(n-k)*3^k*binomial(n,k)*binomial(2*k,k))^2}
for(n=0, 20, print1(a(n), ", "))
-
/* a(n) = A322246(n)^2 - binomial sum */
{a(n) = sum(k=0,n, 11^(n-k)*(-3)^k*binomial(n,k)*binomial(2*k,k))^2}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1 + 1*11*x, sqrt((1 - 1^2*x)*(1 - 11^2*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
A098658
a(n) = 3^n*(2*n)!/(n!)^2.
Original entry on oeis.org
1, 6, 54, 540, 5670, 61236, 673596, 7505784, 84440070, 956987460, 10909657044, 124965162504, 1437099368796, 16581915793800, 191876454185400, 2225766868550640, 25874539846901190, 301362287628613860
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[3^n*Factorial(2*n)/Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
-
Table[3^n (2n)!/(n!)^2,{n,0,20}] (* Harvey P. Dale, Dec 14 2011 *)
-
/* same as in A092566 but use */
steps=[[1,0], [1,0], [1,0], [0,1]]; /* note the triple [1,0] */
/* Joerg Arndt, Jun 30 2011 */
A340973
Generating function Sum_{n >= 0} a(n)*x^n = 1/sqrt((1-x)*(1-13*x)).
Original entry on oeis.org
1, 7, 67, 721, 8179, 95557, 1137709, 13725439, 167204947, 2052215893, 25338173497, 314356676179, 3915672171229, 48938691421627, 613404577267843, 7707619156442401, 97058716523798227, 1224551690144551237
Offset: 0
-
a[n_] := Sum[3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Feb 01 2021 *)
nxt[{n_,a_,b_}]:={n+1,b,(7*b(2n+1)-13*n*a)/(n+1)}; Join[{1},NestList[nxt,{2,7,67},20] [[All,2]]] (* Harvey P. Dale, Apr 27 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(1/sqrt((1-x)*(1-13*x)))
-
a(n) = sum(k=0, n, 3^k*binomial(n, k)*binomial(2*k, k));
-
a(n) = polcoef((1+7*x+9*x^2)^n, n);
A307695
Expansion of 1/(sqrt(1-4*x)*sqrt(1-16*x)).
Original entry on oeis.org
1, 10, 118, 1540, 21286, 304300, 4443580, 65830600, 985483270, 14869654300, 225759595348, 3444812388280, 52781007848284, 811510465220920, 12513859077134008, 193460383702061200, 2997463389599395270, 46532910920993515900, 723626591914643806180, 11270311875128088314200
Offset: 0
Cf.
A000984 (c=0,d=4,e=1),
A026375 (c=1,d=5,e=1),
A081671 (c=2,d=6,e=1),
A098409 (c=3,d=7,e=1),
A098410 (c=4,d=8,e=1),
A104454 (c=5,d=9,e=1).
Cf.
A084605 (c=-3,d=5,e=2),
A098453 (c=-2,d=6,e=2),
A322242 (c=-1,d=7,e=2),
A084771 (c=1,d=9,e=2),
A248168 (c=3,d=11,e=2).
Cf.
A322246 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3).
-
a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
-
N=66; x='x+O('x^N); Vec(1/sqrt(1-20*x+64*x^2))
-
{a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))}
-
{a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))}
A340972
a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k) * binomial(2*k,k).
Original entry on oeis.org
1, -1, 17, -395, 13345, -592299, 32630401, -2148740061, 164682639745, -14401797806195, 1415344434226801, -154426458074411313, 18523291145011712929, -2422743610992855309925, 343167234011405980982625
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Feb 01 2021 *)
-
a(n) = sum(k=0, n, (-n)^k*binomial(n, k)*binomial(2*k, k));
-
a(n) = polcoef(1/sqrt((1-x)*(1+(4*n-1)*x)+x*O(x^n)), n);
-
a(n) = polcoef((1-(2*n-1)*x+(n*x)^2)^n, n);
Showing 1-5 of 5 results.
Comments