cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A101298 Bisection of A098801 (decimal expansion of Pi + 1/Pi).

Original entry on oeis.org

3, 5, 9, 2, 3, 7, 3, 8, 9, 0, 0, 4, 0, 1, 0, 4, 3, 6, 8, 6, 0, 8, 9, 8, 6, 1, 7, 8, 7, 2, 9, 8, 4, 5, 1, 0, 1, 5, 6, 2, 6, 8, 8, 6, 4, 0, 7, 6, 3, 3, 8, 4, 9, 7, 1, 6, 7, 8, 2, 7, 0, 7, 6, 8, 0, 7, 9, 3, 5, 7, 8, 2, 4, 2, 5, 1, 8, 7, 5, 0, 7, 4, 3, 5, 6, 5, 6, 6, 5, 7, 5, 3, 4, 6, 9, 5, 0, 0, 8, 6, 5, 2, 1, 4, 7
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Dec 22 2004

Keywords

Programs

  • Maple
    nmax := 200: Digits := 2*nmax: A101298 := proc(n) floor(10^(2*n)*evalf(Pi+1.0/Pi)) mod 10; end: seq(A101298(n),n=0..nmax-10) ; # R. J. Mathar, Mar 12 2008
  • Mathematica
    Take[RealDigits[Pi+1/Pi,10,220][[1]],{1,-1,2}] (* Harvey P. Dale, May 21 2018 *)

Extensions

More terms from R. J. Mathar, Mar 12 2008

A099643 Continued fraction for Pi + 1/Pi.

Original entry on oeis.org

3, 2, 5, 1, 2, 1, 3, 2, 1, 2, 1, 13, 897, 2, 8, 1, 2, 1, 1, 15, 2, 3, 2, 1, 1, 2, 1, 11, 2, 1117, 1, 12, 2, 1, 1, 2, 1, 18, 4, 187, 22, 1, 3, 3, 3, 14, 1, 2, 3, 1, 78, 3, 1, 1, 65, 3, 1, 4, 2, 2, 2, 1, 3, 16, 2, 5, 5, 2, 1, 4, 1, 3, 883, 1, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 15, 1, 2, 5, 1, 1, 2, 1, 9, 16, 1
Offset: 0

Views

Author

Labos Elemer, Nov 02 2004

Keywords

Comments

Pi and 1/Pi have separately x and 1-shifted-x continued fraction coefficient series. This expansion apparently does not display connection with those of added terms.

Crossrefs

Cf. A001203, A098801 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Pi+1/Pi, 128]
  • PARI
    contfrac(Pi + 1/Pi) \\ Amiram Eldar, Mar 08 2025

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A347407 Decimal expansion of Sum_{i>=1} of i/Pi^i.

Original entry on oeis.org

6, 8, 4, 9, 7, 7, 2, 3, 1, 5, 3, 1, 5, 5, 8, 1, 7, 2, 7, 1, 3, 4, 4, 6, 0, 9, 6, 9, 3, 0, 7, 6, 5, 6, 1, 8, 1, 0, 0, 0, 6, 3, 8, 2, 3, 6, 4, 0, 1, 3, 4, 8, 8, 3, 9, 8, 1, 2, 2, 8, 6, 6, 7, 8, 9, 1, 5, 2, 8, 0, 2, 0, 4, 0, 1, 4, 8, 3, 1, 0, 7, 4, 5, 9, 4, 8
Offset: 0

Views

Author

Christoph B. Kassir, Aug 30 2021

Keywords

Examples

			0.684977231531558172713446096930765618100063823640134883981...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(Pi - 1)^2, 10, 100][[1]] (* Amiram Eldar, Aug 30 2021 *)
  • PARI
    suminf(i=1, i/Pi^i) \\ Michel Marcus, Aug 30 2021

Formula

Equals Pi/(Pi-1)^2. - Vaclav Kotesovec, Aug 30 2021
Equals 1/(A098801 - 2). - Amiram Eldar, Aug 30 2021
Showing 1-3 of 3 results.