A098849 a(n) = n*(n + 16).
0, 17, 36, 57, 80, 105, 132, 161, 192, 225, 260, 297, 336, 377, 420, 465, 512, 561, 612, 665, 720, 777, 836, 897, 960, 1025, 1092, 1161, 1232, 1305, 1380, 1457, 1536, 1617, 1700, 1785, 1872, 1961, 2052, 2145, 2240, 2337, 2436, 2537, 2640, 2745, 2852, 2961
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
seq(n*(n+16),n=0..55); # Emeric Deutsch, Mar 26 2005 a:=n->sum(n, j=17..n): seq(a(n), n=16..63); # Zerinvary Lajos, Feb 17 2008
-
Mathematica
s=0;lst={};Do[s+=n;AppendTo[lst,s],{n,17,6!,2}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *) LinearRecurrence[{3, -3, 1}, {0, 17, 36}, 50] (* G. C. Greubel, Jul 29 2016 *) Table[n(n+16),{n,0,50}] (* Harvey P. Dale, Jul 18 2024 *)
-
PARI
a(n)=n*(n+16) \\ Charles R Greathouse IV, Jul 30 2016
Formula
a(n) = (n+8)^2 - 8^2 = n*(n + 16), n>=0.
G.f.: x*(17 - 15*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 15 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(17 + x)*exp(x). (End)
From Amiram Eldar, Jan 15 2021: (Start)
Sum_{n>=1} 1/a(n) = H(16)/16 = A001008(16)/A102928(16) = 2436559/11531520, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 95549/2306304. (End)
Extensions
More terms from Emeric Deutsch, Mar 26 2005