A098859 Number of partitions of n into parts each of which is used a different number of times.
1, 1, 2, 2, 4, 5, 7, 10, 13, 15, 21, 28, 31, 45, 55, 62, 82, 105, 116, 153, 172, 208, 251, 312, 341, 431, 492, 588, 676, 826, 905, 1120, 1249, 1475, 1676, 2003, 2187, 2625, 2922, 3409, 3810, 4481, 4910, 5792, 6382, 7407, 8186, 9527, 10434
Offset: 0
Examples
a(6)=7 because 6= 4+1+1= 3+3= 3+1+1+1= 2+2+2= 2+1+1+1+1= 1+1+1+1+1+1. Four unrestricted partitions of 6 are not counted by a(6): 5+1, 4+2, 3+2+1 because at least two different summands are each used once; 2+2+1+1 because each summand is used twice. From _Gus Wiseman_, Apr 19 2019: (Start) The a(1) = 1 through a(9) = 15 partitions are the following. The Heinz numbers of these partitions are given by A130091. 1 2 3 4 5 6 7 8 9 11 111 22 221 33 322 44 333 211 311 222 331 332 441 1111 2111 411 511 422 522 11111 3111 2221 611 711 21111 4111 2222 3222 111111 22111 5111 6111 31111 22211 22221 211111 41111 33111 1111111 221111 51111 311111 411111 2111111 2211111 11111111 3111111 21111111 111111111 (End)
Links
- Simon Langowski and Mark Daniel Ward, Table of n, a(n) for n = 0..2000 (terms 0..300 from M. D. Ward, 301..700 from Maciej Ireneusz Wilczynski)
- James Allen Fill, Svante Janson and Mark Daniel Ward, Partitions with Distinct Multiplicities of Parts: On An "Unsolved Problem" Posed By Herbert S. Wilf, The Electronic Journal of Combinatorics, Volume 19, Issue 2 (2012)
- Daniel Kane and Robert C. Rhoades, Asymptotics for Wilf's partitions with distinct multiplicities
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Simon Langowski, Program to compute Wilf Partitions, 2018
- Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13.
- Doron Zeilberger, Using generatingfunctionology to enumerate distinct-multiplicity partitions; Local copy [Pdf file only, no active links]
Crossrefs
Programs
-
Haskell
a098859 = p 0 [] 1 where p m ms _ 0 = if m `elem` ms then 0 else 1 p m ms k x | x < k = 0 | m == 0 = p 1 ms k (x - k) + p 0 ms (k + 1) x | m `elem` ms = p (m + 1) ms k (x - k) | otherwise = p (m + 1) ms k (x - k) + p 0 (m : ms) (k + 1) x -- Reinhard Zumkeller, Dec 27 2012
-
Mathematica
a[n_] := Length[sp = Split /@ IntegerPartitions[n]] - Count[sp, {__List, b_List, ___List, c_List, ___List} /; Length[b] == Length[c]]; Table[a[n], {n, 0, 48}] (* _Jean-François Alcover, Jan 17 2013 *)
-
PARI
a(n)={((r,k,b,w)->if(!k||!r, if(r,0,1), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b, 1<
Andrew Howroyd, Aug 31 2019
Formula
log(a(n)) ~ N*log(N) where N = (6*n)^(1/3) (see Fill, Janson and Ward). - Peter Luschny, Jun 04 2012
Extensions
Corrected and extended by Vladeta Jovovic, Oct 22 2004
Comments