cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 261 results. Next

A351592 Number of Look-and-Say partitions (A239455) of n without distinct multiplicities, i.e., those that are not Wilf partitions (A098859).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 5, 2, 8, 9, 8, 6, 21, 14, 20, 26, 31, 24, 53, 35, 60, 68, 78, 76, 140, 115, 163, 183, 232, 218, 343, 301, 433, 432, 565, 542, 774, 728, 958, 977, 1251, 1220, 1612, 1561, 2053, 2090, 2618, 2609, 3326, 3378
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

A partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are distinct, so y is counted under A239455(9).
A partition is Wilf iff it has distinct multiplicities of parts. For example, (2,2,2,1,1,1) has multiplicities (3,3), so is not counted under A098859(9).
The Heinz numbers of these partitions are given by A351294 \ A130091.
Is a(17) = 0 the last zero of the sequence?

Examples

			The a(9) = 1 through a(18) = 5 partitions are (empty columns not shown):
  n=9:      n=12:       n=15:         n=16:       n=18:
  --------------------------------------------------------------
  (222111)  (333111)    (333222)      (33331111)  (444222)
            (22221111)  (444111)                  (555111)
                        (2222211111)              (3322221111)
                                                  (32222211111)
                                                  (222222111111)
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Look-and-Say partitions are counted by A239455, ranked by A351294.
Non-Wilf partitions are counted by A336866, ranked by A130092.
Non-Look-and-Say partitions are counted by A351293, ranked by A351295.
A000569 = number of graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A225485/A325280 = frequency depth, ranked by A182850/A323014.
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths
A351013 = compositions with all distinct runs.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&Select[Permutations[#], UnsameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A239455(n) - A098859(n). Here we assume A239455(0) = 1.

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A130091 Numbers having in their canonical prime factorization mutually distinct exponents.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2007

Keywords

Comments

This sequence does not contain any number of the form 36n-6 or 36n+6, as such numbers are divisible by 6 but not by 4 or 9. Consequently, this sequence does not contain 24 consecutive integers. The quest for the greatest number of consecutive integers in this sequence has ties to the ABC conjecture (see the MathOverflow link). - Danny Rorabaugh, Sep 23 2015
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities. The enumeration of these partitions by sum is given by A098859. - Gus Wiseman, May 04 2019
Aktaş and Ram Murty (2017) called these terms "special numbers" ("for lack of a better word"). They prove that the number of terms below x is ~ c*x/log(x), where c > 1 is a constant. - Amiram Eldar, Feb 25 2021
Sequence A005940(1+A328592(n)), n >= 1, sorted into ascending order. - Antti Karttunen, Apr 03 2022

Examples

			From _Gus Wiseman_, May 04 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
(End)
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local f;
    f:= map2(op,2,ifactors(t)[2]);
    nops(f) = nops(convert(f,set));
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 30 2015
  • Mathematica
    t[n_] := FactorInteger[n][[All, 2]]; Select[Range[400],  Union[t[#]] == Sort[t[#]] &]  (* Clark Kimberling, Mar 12 2015 *)
  • PARI
    isok(n) = {nbf = omega(n); f = factor(n); for (i = 1, nbf, for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)););); return (1);} \\ Michel Marcus, Aug 18 2013
    
  • PARI
    isA130091(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2])))); \\ Antti Karttunen, Apr 03 2022

Formula

a(n) < A130092(n) for n<=150, a(n) > A130092(n) for n>150.

A325325 Number of integer partitions of n with distinct differences between successive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 5, 8, 11, 12, 16, 22, 21, 30, 34, 42, 49, 64, 67, 87, 95, 117, 132, 160, 169, 207, 230, 274, 301, 360, 395, 463, 506, 602, 656, 762, 834, 960, 1042, 1220, 1311, 1505, 1643, 1859, 2000, 2341, 2491, 2827, 3083, 3464, 3747, 4302, 4561, 5154
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325368.

Examples

			The a(0) = 1 through a(9) = 12 partitions:
  ()  (1)  (2)   (3)   (4)    (5)    (6)    (7)    (8)     (9)
           (11)  (21)  (22)   (32)   (33)   (43)   (44)    (54)
                       (31)   (41)   (42)   (52)   (53)    (63)
                       (211)  (221)  (51)   (61)   (62)    (72)
                              (311)  (411)  (322)  (71)    (81)
                                            (331)  (332)   (441)
                                            (421)  (422)   (522)
                                            (511)  (431)   (621)
                                                   (521)   (711)
                                                   (611)   (4221)
                                                   (4211)  (4311)
                                                           (5211)
For example, (5,2,1,1) has differences (-3,-1,0), which are distinct, so (5,2,1,1) is counted under a(9).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[#]&]],{n,0,30}]

A239455 Number of Look-and-Say partitions of n; see Comments.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0

Views

Author

Keywords

Comments

Suppose that p = x(1) >= x(2) >= ... >= x(k) is a partition of n. Let y(1) > y(2) > ... > y(h) be the distinct parts of p, and let m(i) be the multiplicity of y(i) for 1 <= i <= h. Then we can "look" at p as "m(1) y(1)'s and m(2) y(2)'s and ... m(h) y(h)'s". Reversing the m's and y's, we can then "say" the Look-and-Say partition of p, denoted by LS(p). The name "Look-and-Say" follows the example of Look-and-Say integer sequences (e.g., A005150). As p ranges through the partitions of n, LS(p) ranges through all the Look-and-Say partitions of n. The number of these is A239455(n).
The Look-and-Say array is distinct from the Wilf array, described at A098859; for example, the number of Look-and-Say partitions of 9 is A239455(9) = 16, whereas the number of Wilf partitions of 9 is A098859(9) = 15. The Look-and-Say partition of 9 which is not a Wilf partition of 9 is [2,2,2,1,1,1].
Conjecture: a partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are all distinct, so y is counted under a(9). - Gus Wiseman, Aug 11 2025
Also the number of integer partitions y of n such that there is a pairwise disjoint way to choose a strict integer partition of each multiplicity (or run-length) of y. - Gus Wiseman, Aug 11 2025

Examples

			The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
		

Crossrefs

These include all Wilf partitions, counted by A098859, ranked by A130091.
These partitions are listed by A239454 in graded reverse-lex order.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351204, complement A351203.
The complement is counted by A351293, apparently ranked by A351295, conjugate A381433.
These partitions appear to be ranked by A351294, conjugate A381432.
The non-Wilf case is counted by A351592.
For normal multisets we appear to have A386580, complement A386581.
A000110 counts set partitions, ordered A000670.
A000569 = graphical partitions, complement A339617.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
A386583 counts separable partitions, sums A325534, ranks A335433.
A386584 counts inseparable partitions, sums A325535, ranks A335448.
A386585 counts separable type partitions, sums A336106, ranks A335127.
A386586 counts inseparable type partitions, sums A386638 or A025065, ranks A335126.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018, ranked by A044813.
- A329739 = compositions, for runs A351013, ranked by A351596.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
    Flatten[t](*A239454,sequence*)
    Map[Length[LS[#]] &, Range[25]](*A239455*)
    (* Peter J. C. Moses, Mar 18 2014 *)
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)

A351294 Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

First differs from A130091 (Wilf partitions) in having 216.
See A239455 for the definition of Look-and-Say partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()            20: (3,1,1)         47: (15)
      2: (1)           23: (9)             48: (2,1,1,1,1)
      3: (2)           24: (2,1,1,1)       49: (4,4)
      4: (1,1)         25: (3,3)           50: (3,3,1)
      5: (3)           27: (2,2,2)         52: (6,1,1)
      7: (4)           28: (4,1,1)         53: (16)
      8: (1,1,1)       29: (10)            54: (2,2,2,1)
      9: (2,2)         31: (11)            56: (4,1,1,1)
     11: (5)           32: (1,1,1,1,1)     59: (17)
     12: (2,1,1)       37: (12)            61: (18)
     13: (6)           40: (3,1,1,1)       63: (4,2,2)
     16: (1,1,1,1)     41: (13)            64: (1,1,1,1,1,1)
     17: (7)           43: (14)            67: (19)
     18: (2,2,1)       44: (5,1,1)         68: (7,1,1)
     19: (8)           45: (3,2,2)         71: (20)
For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
		

Crossrefs

The Wilf case (distinct multiplicities) is A130091, counted by A098859.
The complement of the Wilf case is A130092, counted by A336866.
These partitions appear to be counted by A239455.
A variant for runs is A351201, counted by A351203 (complement A351204).
The complement is A351295, counted by A351293.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of run-lengths in binary expansion, for all runs A297770.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]!={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A048767 If n = Product (p_j^k_j) then a(n) = Product ( prime(k_j)^pi(p_j) ) where pi is A000720.

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 16, 5, 9, 16, 32, 12, 64, 32, 32, 7, 128, 18, 256, 24, 64, 64, 512, 20, 27, 128, 25, 48, 1024, 64, 2048, 11, 128, 256, 128, 27, 4096, 512, 256, 40, 8192, 128, 16384, 96, 72, 1024, 32768, 28, 81, 54, 512, 192, 65536, 50, 256, 80, 1024, 2048
Offset: 1

Views

Author

Keywords

Comments

If the prime power factors p^e of n are replaced by prime(e)^pi(p), then the prime terms q in the sequence pertain to 2^m with m > 1, since pi(2) = 1. - Michael De Vlieger, Apr 25 2017
Also the Heinz number of the integer partition obtained by applying the map described in A217605 (which interchanges the parts with their multiplicities) to the integer partition with Heinz number n, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The image of this map (which is the union of this sequence) is A130091. - Gus Wiseman, May 04 2019

Examples

			For n=6, 6 = (2^1)*(3^1), a(6) = ([first prime]^pi(2))*([first prime]^pi(3)) = (2^1)*(2^2) = 8.
From _Gus Wiseman_, May 04 2019: (Start)
For n = 1..20, the prime indices of n together with the prime indices of a(n) are the following:
   1: {} {}
   2: {1} {1}
   3: {2} {1,1}
   4: {1,1} {2}
   5: {3} {1,1,1}
   6: {1,2} {1,1,1}
   7: {4} {1,1,1,1}
   8: {1,1,1} {3}
   9: {2,2} {2,2}
  10: {1,3} {1,1,1,1}
  11: {5} {1,1,1,1,1}
  12: {1,1,2} {1,1,2}
  13: {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,1}
  15: {2,3} {1,1,1,1,1}
  16: {1,1,1,1} {4}
  17: {7} {1,1,1,1,1,1,1}
  18: {1,2,2} {1,2,2}
  19: {8} {1,1,1,1,1,1,1,1}
  20: {1,1,3} {1,1,1,2}
(End)
		

Crossrefs

Programs

  • Maple
    A048767 := proc(n)
        local a,p,e,f;
        a := 1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            e := op(2,f) ;
            a := a*ithprime(e)^numtheory[pi](p) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Nov 08 2012
  • Mathematica
    Table[{p, k} = Transpose@ FactorInteger[n]; Times @@ (Prime[k]^PrimePi[p]), {n, 58}] (* Ivan Neretin, Jun 02 2016 *)
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; e >= 0 :> Prime[e]^PrimePi[p]] &, 65] (* Michael De Vlieger, Apr 25 2017 *)

Extensions

a(1)=1 prepended by Alois P. Heinz, Jul 26 2015

A351293 Number of non-Look-and-Say partitions of n. Number of integer partitions of n such that there is no way to choose a disjoint strict integer partition of each multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 28, 44, 56, 80, 111, 148, 192, 264, 335, 447, 575, 743, 937, 1213, 1513, 1924, 2396, 3011, 3715, 4646, 5687, 7040, 8600, 10556, 12804, 15650, 18897, 22930, 27593, 33296, 39884, 47921, 57168, 68360, 81295, 96807, 114685
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A336866 (non-Wilf partitions) at a(9) = 14, A336866(9) = 15, the difference being the partition (2,2,2,1,1,1).
See A239455 for the definition of Look-and-Say partitions.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (32211)
                                             (42111)
                                             (321111)
		

Crossrefs

The complement is counted by A239455, ranked by A351294.
These are all non-Wilf partitions (counted by A336866, ranked by A130092).
A variant for runs is A351203, complement A351204, ranked by A351201.
These partitions appear to be ranked by A351295.
Non-Wilf partitions in the complement are counted by A351592.
A000569 = graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A098859 = Wilf partitions (distinct multiplicities), ranked by A130091.
A181819 = Heinz number of the prime signature of n (prime shadow).
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]==0&]],{n,0,15}] (* Gus Wiseman, Aug 13 2025 *)

Formula

a(n) = A000041(n) - A239455(n).

Extensions

Edited by Gus Wiseman, Aug 12 2025

A351295 Numbers whose multiset of prime factors has no permutation with all distinct run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A130092 (non-Wilf partitions) in lacking 216.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      6: (2,1)         46: (9,1)         84: (4,2,1,1)
     10: (3,1)         51: (7,2)         85: (7,3)
     14: (4,1)         55: (5,3)         86: (14,1)
     15: (3,2)         57: (8,2)         87: (10,2)
     21: (4,2)         58: (10,1)        90: (3,2,2,1)
     22: (5,1)         60: (3,2,1,1)     91: (6,4)
     26: (6,1)         62: (11,1)        93: (11,2)
     30: (3,2,1)       65: (6,3)         94: (15,1)
     33: (5,2)         66: (5,2,1)       95: (8,3)
     34: (7,1)         69: (9,2)        100: (3,3,1,1)
     35: (4,3)         70: (4,3,1)      102: (7,2,1)
     36: (2,2,1,1)     74: (12,1)       105: (4,3,2)
     38: (8,1)         77: (5,4)        106: (16,1)
     39: (6,2)         78: (6,2,1)      110: (5,3,1)
     42: (4,2,1)       82: (13,1)       111: (12,2)
For example, the prime indices of 150 are {1,2,3,3}, with permutations and run-lengths (right):
  (3,3,2,1) -> (2,1,1)
  (3,3,1,2) -> (2,1,1)
  (3,2,3,1) -> (1,1,1,1)
  (3,2,1,3) -> (1,1,1,1)
  (3,1,3,2) -> (1,1,1,1)
  (3,1,2,3) -> (1,1,1,1)
  (2,3,3,1) -> (1,2,1)
  (2,3,1,3) -> (1,1,1,1)
  (2,1,3,3) -> (1,1,2)
  (1,3,3,2) -> (1,2,1)
  (1,3,2,3) -> (1,1,1,1)
  (1,2,3,3) -> (1,1,2)
Since none have all distinct run-lengths, 150 is in the sequence.
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351201, counted by A351203 (complement A351204).
These partitions appear to be counted by A351293.
The complement is A351294, apparently counted by A239455.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of distinct run-lengths in binary expansion.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A297770 = number of distinct runs in binary expansion.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A329747 = runs-resistance, counted by A329746.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]=={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A242882 Number of compositions of n into parts with distinct multiplicities.

Original entry on oeis.org

1, 1, 2, 2, 6, 12, 16, 40, 60, 82, 216, 538, 788, 2034, 3740, 6320, 13336, 27498, 42936, 93534, 173520, 351374, 734650, 1592952, 3033194, 6310640, 12506972, 25296110, 49709476, 101546612, 195037028, 391548336, 764947954, 1527004522, 2953533640, 5946359758
Offset: 0

Views

Author

Alois P. Heinz, May 25 2014

Keywords

Examples

			a(0) = 1: the empty composition.
a(1) = 1: [1].
a(2) = 2: [1,1], [2].
a(3) = 2: [1,1,1], [3].
a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [2,1,1], [2,2], [4].
a(5) = 12: [1,1,1,1,1], [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [5].
		

Crossrefs

Row sums of A242887 and of A242896.
Cf. A098859 (the same for partitions).

Programs

  • Maple
    b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
          `if`(i<1, 0, add(`if`(j>0 and j in s, 0,
          b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i)))
        end:
    a:= n-> b(n$2, {}):
    seq(a(n), n=0..45);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[n == 0, Sum[j, {j, s}]!, If[i < 1, 0, Sum[If[j > 0 && MemberQ[s, j], 0, b[n - i*j, i - 1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]];
    a[n_] := b[n, n, {}];
    Table[a[n], {n, 0, 45}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
  • PARI
    a(n)={((r,k,b,w)->if(!k||!r, if(r,0,w!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019

A329739 Number of compositions of n whose run-lengths are all different.

Original entry on oeis.org

1, 1, 2, 2, 5, 8, 10, 20, 28, 41, 62, 102, 124, 208, 278, 426, 571, 872, 1158, 1718, 2306, 3304, 4402, 6286, 8446, 11725, 15644, 21642, 28636, 38956, 52296, 70106, 93224, 124758, 165266, 218916, 290583, 381706, 503174, 659160, 865020, 1124458, 1473912, 1907298
Offset: 0

Views

Author

Gus Wiseman, Nov 20 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(7) = 20 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (211)   (221)    (222)     (223)
                    (1111)  (311)    (411)     (322)
                            (1112)   (1113)    (331)
                            (2111)   (3111)    (511)
                            (11111)  (11112)   (1114)
                                     (21111)   (1222)
                                     (111111)  (2221)
                                               (4111)
                                               (11113)
                                               (11122)
                                               (22111)
                                               (31111)
                                               (111112)
                                               (111211)
                                               (112111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The normal case is A329740.
The case of partitions is A098859.
Strict compositions are A032020.
Compositions with relatively prime run-lengths are A000740.
Compositions with distinct multiplicities are A242882.
Compositions with distinct differences are A325545.
Compositions with equal run-lengths are A329738.
Compositions with normal run-lengths are A329766.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Length/@Split[#]&]],{n,0,10}]

Extensions

a(21)-a(26) from Giovanni Resta, Nov 22 2019
a(27)-a(43) from Alois P. Heinz, Jul 06 2020
Showing 1-10 of 261 results. Next