cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099044 a(n) = (2*0^n + 3^n*binomial(2*n,n))/3.

Original entry on oeis.org

1, 2, 18, 180, 1890, 20412, 224532, 2501928, 28146690, 318995820, 3636552348, 41655054168, 479033122932, 5527305264600, 63958818061800, 741922289516880, 8624846615633730, 100454095876204620, 1171964451889053900, 13693479385229998200, 160213708807190978940
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

(1 + (k-1)*sqrt(1-4*k*x))/(k*sqrt(1-4*k*x)) is the g.f. for ((k-1)*0^n + k^n*binomial(2*n,n))/k.

Crossrefs

Programs

  • Magma
    [(2*0^n + 3^n*Binomial(2*n, n))/3: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    Join[{1}, Table[3^(n-1)*binomial(2*n,n), {n,1,30}]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0, 30, print1((2*0^n + 3^n*binomial(2*n,n))/3, ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: 1/3 + 4*x/(sqrt(1-12*x)(1-sqrt(1-12*x))) = (1 + 2*sqrt(1-12*x))/(3*sqrt(1-12*x)).
n*a(n) +6*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 24 2012
E.g.f.: (2 + exp(6*x) * BesselI(0,6*x)) / 3. - Ilya Gutkovskiy, Nov 17 2021

A099046 a(n) = (4*0^n + 5^n*binomial(2*n,n))/5.

Original entry on oeis.org

1, 2, 30, 500, 8750, 157500, 2887500, 53625000, 1005468750, 18992187500, 360851562500, 6888984375000, 132038867187500, 2539208984375000, 48970458984375000, 946762207031250000, 18343517761230468750, 356080050659179687500, 6923778762817382812500
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

(1 + (k-1)*sqrt(1-4*k*x))/(k*sqrt(1-4*k*x)) is the g.f. for ((k-1)*0^n + k^n*binomial(2*n,n))/k.

Crossrefs

Programs

  • Magma
    [(4*0^n + 5^n*Binomial(2*n, n))/5: n in [ 0..30]]; // G. C. Greubel, Dec 31 2017
    
  • Mathematica
    CoefficientList[Series[(1+4Sqrt[1-20x])/(5Sqrt[1-20x]),{x,0,20}],x]  (* Harvey P. Dale, Mar 30 2011 *)
    Join[{1}, Table[5^(n - 1)*Binomial[2*n, n], {n,1,50}]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0,30, print1((4*0^n + 5^n*binomial(2*n,n))/5, ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: (1 + 4*sqrt(1-20*x))/(5*sqrt(1-20*x)).
n*a(n) +10*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 24 2012
E.g.f.: (4 + exp(10*x) * BesselI(0,10*x)) / 5. - Ilya Gutkovskiy, Nov 17 2021
a(n) = Integral_{x = 0..20} x^n * w(x) dx for n >= 1, where w(x) = 1/( 5*Pi*sqrt(x*(20 - x)) ) is positive on the interval (0, 20). The weight function w(x) is singular at x = 0 and at x = 20 and is the solution of the Hausdorff moment problem. - Peter Bala, Oct 12 2024

A240558 a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).

Original entry on oeis.org

1, 2, 4, 24, 32, 320, 320, 4480, 3584, 64512, 43008, 946176, 540672, 14057472, 7028736, 210862080, 93716480, 3186360320, 1274544128, 48432676864, 17611882496, 739699064832, 246566354944, 11342052327424, 3489862254592, 174493112729600, 49855175065600
Offset: 0

Views

Author

Peter Luschny, Apr 14 2014

Keywords

Crossrefs

Programs

  • Maple
    A240558 := n -> 2^n*n!/((iquo(n,2)+1)*iquo(n,2)!^2):
    seq(A240558(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x,0,n}], {n,0,22}]
  • PARI
    x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
  • Sage
    def A240558():
        x, n = 1, 1
        while True:
            yield x
            m = 2*n if is_odd(n) else 8/(n+2)
            x *= m
            n += 1
    a = A240558(); [next(a) for i in range(36)]
    

Formula

O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).
For a recurrence see the Sage program.
a(n) = 2^n*A057977(n)
a(2*k) = A151403(k) = 2^k*A151374(k) = 4^k*A000108(k).
a(2*k+1) = A099045(k+1) = 2^k*A069723(k+2) = 4^k*A000984(k+1).
From Peter Luschny, Jan 31 2015: (Start)
a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).
a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).
a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).
a(n) ~ 2^(n+N)/((n+1)^*sqrt(Pi*(2*N+1))); here = 1 if n is even, 0 otherwise and N = n++1. (End)
Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
Showing 1-3 of 3 results.